Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
The statement “When
an object is in orbit, it is falling at the same rate at which the Earth is
curving” is true. The speed of a satellite orbiting the earth depends only on
the mass of the earth and the mass of the satellite.
Celina should perform the following method to get pure water:
Boil the water in a pan, as the water boils it changes into gas (water vapours) these vapours should be cooled down through the process of condensation which changes gas into liquid form, Through this process germs would be killed due to high temperature and the salt will remain in the pan as salt has higher boiling point than water,
Answer:
Therefore the escape velocity from Mar's gravity is
m/s.
Explanation:
Escape velocity: Escape velocity is a the minimum velocity that a object needs to escape from the gravitational field of massive body.

Escape velocity
G=Universal gravitational constant = 6.673×10⁻¹¹N m²/Kg²
M= mass of Mars = 6.42×10²³ kg
R = Radius of the Mars = 3.40×10³m
The escape velocity does not depend on the velocity of a object.

m/s
Therefore the escape velocity from Mar's gravity is
m/s.