The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
Answer:
A. 26.17 B. 1.17 C. 30.86 D. 5.86
Explanation:
The distance of the galaxy is 32.86 Mpc.
Using the hubble law, v = H₀D where v = apparent velocity of galaxy = 2300 km/s, H = hubble constant = 70 km/s/Mpc and D = distance of galaxy.
Since we require the distance of the galaxy, we make D subject of the formula in the equation. So, we have
D = v/H₀
Substituting the values of the variables into the equation, we have
D = 2300 km/s ÷ 70 km/s/Mpc
D = 32.86 Mpc
So, the distance of the galaxy is 32.86 Mpc
Learn more about hubble law here:
brainly.com/question/18484687
The answer is: "
44
km " ;
or; write as: "
44.333 km " .
___________________________________________________________Explanation:___________________________________________________________(70 km + 63 km) ÷ (2 + 1 ) = 133 km ÷ 3 = "
44
km " ;
or; write as: "
44.333 km " .
___________________________________________________________