Answer: option A) initially increases, then decreases.
Justification:
The increase of the rate of effective collisions among particles as the temperature increases is explained by the collision theory in virtue of the increase of the kinetic energy.
This is, as the temperature increase so the kinetic energy increase and the higher the kinetic energy the greater the number of collisions and the greater the chances that this energy overcome the activation energy (the energy needed to start the reaction).
Now, as the reaction progress the number of reactants particles naturally decrease (some of them have been converted into product) so this lower number of particles means lower concentration which means lower collisions and, thereafter, a decrease in the reaction rate.
Answer:
22cm
Explanation:
focal length = 11cm
radius of curvature,r = 2f
r= 2 x 11
r=22cm
Explanation:
Exothermic reaction is defined as the reaction in which release of heat takes place. This also means that in an exothermic reaction, bond energies of reactants is less than the bond energies of products.
Hence, difference between the energies between the reactants and products releases as heat and therefore, enthalpy of the system will decrease.
Whereas in an endothermic reaction, heat is supplied from outside and absorbed by the reactant molecules. Hence, enthalpy of the system increases.
As water acts as a coolent and when fuel rods in a nuclear reactor are immersed in it then heat created by coolent is absorbed by water and then it changes into steam.
Since, absorption of heat occurs in the nuclear reactor. Therefore, it is an endothermic reaction.
Thus, we can conclude that nuclear reactors use fuel rods to heat water and generate steam. This process is endothermic.
Answer:
Explanation:
weight on moon = 1/6* weight on earth
69.3=1/6*weight on earth
weight on earth = 69.3*6
weight on earth = 415.8 N