Answer:
-0.481 m/s^2
Explanation:
The force equation of this problem is given as:
F - W = ma
where F = upward force holding the clarinet bag
W = downward force (weight of the clarinet)
The mass of the clarinet bag is 3.010 kg, therefore, its weight is:
W = mg
W = 3.010 * 9.8 = 29.498
F = 28.05 N
Therefore:
28.05 - 29.498 = 3.010 * a
-1.448 = 3.010a
=> a = -1.448 / 3.010
a = -0.481 m/s^2
The acceleration of the bag is downward.
Answer: Period = 0.2 seconds; frequency = 5Hz
Explanation:
Number of oscillations = 50
Time required = 10 seconds
Period (T) = ?
Frequency of the oscillations (F) = ?
A) Recall that frequency is the number of oscillations that the mass spring system completes in one second.
i.e Frequency = (Number of oscillations / time taken)
F = 50/10 = 5Hz
B) Period, T is inversely proportional to frequency. i.e Period = 1/Frequency
T = 1/5Hz
T = 0.2 seconds
Thus, the the period and frequency of the oscillations are 0.2 seconds and 5Hz respectively.
A single element on the periodic table
Answer:
(a) 1.47 x 10⁴ V/m
(b) 1.28 x 10⁻⁷C/m²
(c) 3.9 x 10⁻¹²F
(d) 9.75 x 10⁻¹¹C
Explanation:
(a) For a parallel plate capacitor, the electric field E between the plates is given by;
E = V / d -----------(i)
Where;
V = potential difference applied to the plates
d = distance between these plates
From the question;
V = 25.0V
d = 1.70mm = 0.0017m
Substitute these values into equation (i) as follows;
E = 25.0 / 0.0017
E = 1.47 x 10⁴ V/m
(c) The capacitance of the capacitor is given by
C = Aε₀ / d
Where
C = capacitance
A = Area of the plates = 7.60cm² = 0.00076m²
ε₀ = permittivity of free space = 8.85 x 10⁻¹²F/m
d = 1.70mm = 0.0017m
C = 0.00076 x 8.85 x 10⁻¹² / 0.0017
C = 3.9 x 10⁻¹²F
(d) The charge, Q, on each plate can be found as follows;
Q = C V
Q = 3.9 x 10⁻¹² x 25.0
Q = 9.75 x 10⁻¹¹C
Now since we have found other quantities, it is way easier to find the surface charge density.
(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e
σ = Q / A
σ = 9.75 x 10⁻¹¹ / 0.00076
σ = 1.28 x 10⁻⁷C/m²