1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
3 years ago
14

Coherent light of wavelength 525 nm passes through two thin slits that are 4.15×10^(−2) mm apart and then falls on a screen 7

5.0 cm away.
Part AHow far away from the central bright fringe on the screen is the fifth bright fringe (not counting the central bright fringe)?y5= cm
Part BHow far away from the central bright fringe on the screen is the eighth dark fringe?y8= cm
Physics
1 answer:
IRINA_888 [86]3 years ago
5 0

A) 4.7 cm

The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

sin \theta=\frac{n \lambda}{d}

where

n is the order of the maximum

\lambda is the wavelength

a is the distance between the slits

In this problem,

n = 5

\lambda=525 nm =5.25\cdot 10^{-7} m

a=4.15\cdot 10^{-2} mm=4.15\cdot 10^{-5} m

So we find

\theta=sin^{-1} (\frac{(5)(5.25\cdot 10^{-7} m)}{4.15\cdot 10^{-5} m})=3.62^{\circ}

And given the distance of the screen from the slits,

D=75.0 cm = 0.75 m

The distance of the 5th  bright fringe from the central bright fringe will be given by

y=D tan \theta = (0.75 m)tan 3.62^{\circ}=0.047 m = 4.7 cm

B) 8.1 cm

The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

sin \theta=\frac{(n+\frac{1}{2}) \lambda}{d}

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

\theta=sin^{-1} (\frac{(8+\frac{1}{2})(5.25\cdot 10^{-7} m)}{4.15\cdot 10^{-5} m})=6.17^{\circ}

And the distance of the 8th dark fringe from the central bright fringe will be given by

y=D tan \theta = (0.75 m)tan 6.17^{\circ}=0.081 m = 8.1 cm

You might be interested in
When we get out of the bed on a very cold morning, we feel that the air of the room is cold. But when we come back after staying
S_A_V [24]

Answer:

This is because the air outside is always cooler than the air inside, so after staying outside your body adapts to the cold air, when you come back inside, the cold air is still in you which makes the room seem warmer.

4 0
3 years ago
Calculate the critical angle for light going from Glycerine to air.
Georgia [21]
The refractive index for glycerine is n_g=1.473, while for air it is n_a = 1.00.

When the light travels from a medium with greater refractive index to a medium with lower refractive index, there is a critical angle over which there is no refraction, but all the light is reflected. This critical angle is given by:
\theta_c = \arcsin ( \frac{n_2}{n_1} )
where n1 and n2 are the refractive indices of the two mediums. If we susbtitute the refractive index of glycerine and air in the formula, we find the critical angle for this case:
\theta_c = \arcsin ( \frac{1.00}{1.473} )=42.8^{\circ}
6 0
2 years ago
A friend tells you that a lunar eclipse will take place the following week, and invites you to join him to observe the eclipse t
WARRIOR [948]

Answer:

y = 80.2 mille

Explanation:

The minimum size of an object that can be seen is determined by the diffraction phenomenon, if we use the Rayleigh criterion that establishes that two objects can be distinguished without the maximum diffraction of a body coincides with the minimum of the other body, therefore so much for the pupil of the eye that it is a circular opening

          θ = 1.22 λ/ d

in a normal eye the diameter of the pupils of d = 2 mm = 0.002 m, suppose the wavelength of maximum sensitivity of the eye λ = 550 nm = 550 10⁻⁹ m

         θ = 1.22 550 10⁻⁹ / 0.002

         θ = 3.355 10⁻⁴ rad

Let's use trigonometry to find the distance supported by this angle, the distance from the moon to the Earth is L = 238900 mille = 2.38900 10⁵ mi

       tan θ = y / L

       y = L tan θ

       y = 2,389 10⁵ tan 3,355 10⁻⁴

       y = 8.02 10¹ mi

       y = 80.2 mille

This is the smallest size of an object seen directly by the eye

5 0
3 years ago
Help please I will mark you the brainly!
Fudgin [204]

D)

Explanation:

Coz the position changes with time but the position change is not constant throughout time So, D) does not have constant velocity

3 0
2 years ago
Read 2 more answers
Solve this for me please
Rama09 [41]
Power output = V*I=11000*750=8250 kVA= 8250 kW
8 0
3 years ago
Other questions:
  • You throw a baseball that has a mass of 0.425 kilograms. The ball leaves your hand with a speed
    14·1 answer
  • One part of a freely swinging magnet always points
    12·2 answers
  • An astronaut and his space suit have a combined mass of 157 kg The astronaut is using a soke
    11·2 answers
  • A car of mass 940.0 kg accelerates away from an intersection on a horizontal road. When the car speed is 42.5 km/hr (11.8 m/s),
    9·2 answers
  • List and define three types of intermolecular forces and identify which types of molecules each forces affects.
    8·1 answer
  • Im bad at work problems can any one help with this problem ?
    12·1 answer
  • When using a cell phone, a(n) ________ converter chip changes your voice's sound waves into digital signals.
    10·1 answer
  • What is the deBroglie wavelength of an electron moving at 1.37 x 106 m/s if the mass of the electron is 9.11 x 10-28 g
    9·1 answer
  • A screw Jack whose pitch is 2mm is used to raise a bus of mass 900kg through height of 20cm. The length of the Tommy of the Tomm
    6·1 answer
  • List 3 different things you can read off a motion graph.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!