Answer:
a) 2.5 m/s²
b) 6.12 m/s
Explanation:
Tension of rope = T = 356N
Weight of material = W = 478 N
Distance from the ground = s = 7.5 m
Acceleration due to gravity = g = 9.81 m/s²
Mass of material = m = 478/9.81 = 48.72
Final velocity before the bundle hits the ground = v
Initial velocity = u = 0
Acceleration experienced by the material when being lowered = a
a) W-T = ma
⇒478-356 = 48.72×a

⇒a = 2.5 m/s²
∴ Acceleration achieved by the material is 2.5 m/s²
b) v²-u² = 2as
⇒v²-0 = 2×2.5×7.5
⇒v² = 37.5
⇒v = 6.12 m/s
∴ Velocity of the material before hitting the ground is 6.12 m/s
The east component of the cars displacement is 17.3 miles.
Trigonometric ratio is used to show the relationship between the sides of a right angled triangle and its angles.
Let x represent the east component of the cars displacement.
Using trigonometric ratio:
cos(30) = x / 20
x = 20 * cos(30)
x = 17.3 miles
The east component of the cars displacement is 17.3 miles.
Find out more on Trigonometric ratio at: brainly.com/question/1201366
Answer:
B. Geosphere
A. Biosphere
A. Atmosphere
Explanation:
Volcanic eruptions occurs within the Geosphere. The geosphere is the rock solid earth make up of rocks that extends into the deep interior.
Magma formed deep within the crust rises to elevated parts and finally erupts as lava on the surface. When they cool, they solidify to form volcanic rocks.
The volcanic eruptions affects the biosphere significantly. The biosphere is the portion of the earth where all life forms exists.
Gases and ash spewed during an eruption into the atmosphere causes severe changes to weather and leads to pollution. The atmosphere is the gaseous envelope round the earth.
Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m