Answer:
the correct answer is D.) 2,4
Answer:
Option B
Explanation:
For a system of block on inclined ramp shown in the attached image. From the attached image, the Normal force N, weight mg and frictional force f act on the block. The sum of vertical forces should be zero just as sum of vertical forces should be zero when the system is in equilibrium condition.
Taking sum of forces along the inclined plane we deduce that
[tex]f=mgsin \theta
[tex]
Therefore, option B is the correct option.
The length to which the pendulum will be adjusted to keep perfect time is 29.59 inches. See the explanation below.
<h3>What is the justification for the above answer?</h3>
T1 = 2πR√(L1/GM)
and
T2 = 2πR√(L1/GM)
T1/T2 = √(L1/L2).
If the pendulum has an efficient period, that means it executes with perfect frequency.
Thus,
T2 = (24 * 60)/x
= 1440/x
This means that in one day, there are perfect cycles of represented by "x". Note that there are 1440 minutes in one day.
If the other Pendulum is slower by 10 minutes, that means
T1 = 1450/x
Hence
(1450/x)/(1440/x) = √(L1/L2).
⇒ 1450/1440 = √(L1/L2).
Thus,
(1450/1440)² = 30/L
L = 30/(1450/1440)²
L = 30/(1.00694444444)²
L = 30/1.01393711419
L = 29.5876337695
L
29.59 inches.
Hence, the pendulum will need to be adjusted by 29.59 inches to ensure that the clock keeps perfect time.
Learn more about pendulum problems:
brainly.com/question/16617199
#SPJ4
Answer:
total capacity = 135,168,000,000 bytes
Explanation:
given data
hard disk divided = 1100 sectors
cylinders = 40,000
block holds = 512 bytes
rotating rate = 4800 rpm
consider average seek time = 12 msec
to find out
total capacity of this disk
solution
total capacity of this disk are express as
total capacity = hard disk divided × cylinder block holds × average seek time ÷ 2
put here value we get
total capacity = 1100 × 40000 × 512 × 6
total capacity = 135,168,000,000 bytes
Answer: when a circuit is completed (it allows the flow of electrons which causes the light bulb to produce light).
Explanation:
A circuit is described as an electrical setup that is consists of a light bulb, a switch, a wire, a battery which is arranged to allow the flow of electric current. The major components of the electrical circuit includes:
--> The BATTERY which is the source of voltage to the circuit,
--> the WIRE which is the conductive path,
--> the LIGHT BULB which is the load that needs electrical power to operate and
--> the SWITCH which is the controller.
When a circuit is COMPLETED when electrons can flow from one end of a battery all the way around, through the wires, to the other end of the battery. Along its way, it will carry electrons to electrical objects that are connected to it like the light bulb and make it to produce light.
There are different types of electric circuit which are designed to create a conductive path of current or electricity. They include:
--> closed circuit
--> open circuit
--> short circuit
--> parallel circuit
--> series circuit.