HCN is a Bronsted acid; it can dissociate into H+ and CN-. And H+ is a Lewis acid because it accepts election pairs. ... In order for H+ and CN- to be formed, Hydrogen in HCN donates its electrons to Carbon. So in this sense, Hydrogen is the lewis base and Carbon is the lewis acid.
Answer: Magnesium Mg
Explanation:
Oxidization is the process by which a substance either gains oxygen or losses electrons.
The chemical reaction of the above is denoted by,
Mg(s) + 2HCl(aq) -----> MgCl2(aq) + H2(g)
Mg went from a 0 to a +2 state which would mean that it lost electrons.
It was therefore oxidized.
Please do react or comment if you need clarification or if the answer helped you. This can help other users as well. Thank you.
Answer:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Oxidized: Cd
Reduced: Ag
Explanation:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Cd → Cd²⁺ + 2e⁻ Half reaction oxidation
1e⁻ + Ag⁺ → Ag Half reaction reduction
Ag changed oxidation number from +1 to 0
Cd changed oxidation number from 0 to +2
Let's ballance the electrons
( Cd → Cd²⁺ + 2e⁻ ) .1
( 1e⁻ + Ag⁺ → Ag ) .2
Cd + 2e⁻ + 2Ag⁺ → 2Ag + Cd²⁺ + 2e⁻
Finally the ballance equation is:
Cd(s) + 2AgNO₃(aq) → Cd(NO₃)₂ (aq) + 2Ag(s)
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
Answer: The statement (B) is not true about chemical reactions.
Explanation:
A chemical reaction rate is affected by the several factors few of which are temperature, concentration of reactants, surface area etc.
In a chemical reaction, if temperature is increased then the rate of reaction will increase because it will increase the average kinetic energy of the reactant molecules. Thus, large number of molecules will have minimum energy required for an effective collision.
It is known that increasing the amount of reactants will increase the rate of reaction.
Therefore, rate of reaction will change if concentration or temperature is changed.
Hence, the statement (B) is not true about chemical reactions.