Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
It takes work to push charge through a change of potential.
There's no change of potential along an equipotential path,
so that path doesn't require any work.
The time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
The given parameters;
<em>Mass of the first object, m1 = 1 kg</em>
<em>Mass of the second object, m2 = 5 kg</em>
The final velocity of the objects during the downward motion is calculated as follows;

The time of motion of the object from the given height is calculated as;

The time of motion of each object is independent of mass of the object.
Thus, the time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
Learn more about time of motion here: brainly.com/question/2364404