Think about the formula for potential energy. (Surely you remember it):
Potential energy = (mass) x (acceleration of gravity) x (height)
-- The mass on the end of the pendulum doesn't change.
-- The acceleration of gravity doesn't change.
-- The only thing that changes is the height of the mass on the end.
So the potential energy is lowest when its height is the lowest.
That's position <em>B </em>.
Answer:
Option B
Explanation:
For a system of block on inclined ramp shown in the attached image. From the attached image, the Normal force N, weight mg and frictional force f act on the block. The sum of vertical forces should be zero just as sum of vertical forces should be zero when the system is in equilibrium condition.
Taking sum of forces along the inclined plane we deduce that
[tex]f=mgsin \theta
[tex]
Therefore, option B is the correct option.
Answer:
1. The bird close to the center
2. 4/25 of the original force.
Explanation:
1. Tangential velocity is v=w*d (in m/s), where w is the rotational speed, commonly denoted as the letter omega (in radians per second). d is the distance from the center of the rotating object to the position of where you would like to calculate the velocity (in meters).
As we can note, the furthest from the center we are calculating the velovity the higher it is, because the rotational velocity is not changing but the distance of the object with respect to the center is. If v=w*d, then the lower the d (distance) the lower the tangential velocity.
2. Take a look at the picture:
We have the basic equation for the gravitational force.
We have to forces: Fg1, which is the original force, and Fg2, the force when the mass and the distance changes.
If we consider that mass 2 didn't change (m2'=m2), mass 1 is four times its original (m1'=4*m1) and distance is 5 times the original (r'=5*r), then next step is just plugging it into the equation for Fg2.
Dividing the original force Fg1 by the new force Fg2 (notice you can just as well do the inverse, Fg2 divided by Fg1) gives us the relation between the forces, cancelling all the variables and being left only with a simple fraction!
Answer:
Fc = 89.67N
Explanation:
Since the rope is unstretchable, the total length will always be 34m.
From the attached diagram, you can see that we can calculate the new separation distance from the tree and the stucked car H as follows:
L1+L2=34m
Replacing this value in the previous equation:
Solving for H:

We can now, calculate the angle between L1 and the 2m segment:

If we make a sum of forces in the midpoint of the rope we get:
where T is the tension on the rope and F is the exerted force of 87N.
Solving for T, we get the tension on the rope which is equal to the force exerted on the car:
