Answer:
0.055 kg
Explanation:
Given that
Length of the string, l = 5 m
Speed of the wave, v = 30 m/s
Tension on the string, F(t) = 10N
From the formula written in the attachment, we have
v = velocity of the wave, in m/s
F(t) = Tension on the string, in N
U = Mass per length of the string, in kg/m
m = Mass of the string, in kg
l = Length of the string, in m
See attachment for the calculation
It depends on your weight like if you weight 150 lbs. than your maximum income should be 150 grams. Per day.
Explanation:
Let h is the height of the plane above ground. x is the horizontal distance between the ground and the airport. Let s(t) is the distance between the plane and the airport. So,
...........(1)
Given, h = 4, x = 40 and s(t) = -20 mph
Differentiate equation (1) wrt t


When x = 40, 



So, the speed of the airplane is 241.14 m/s. Hence, this is the required solution.
Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.