1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
2 years ago
10

a jetliner goes from rest to a takeoff speed of 162 mi/h in 39.5 s. what is the magnitude of its average acceleration?

Physics
1 answer:
irakobra [83]2 years ago
3 0
Acceleration = V/t

First set velocity to m/s

V = 72.42 m/s

Now we divide velocity by time

A = 72.42/39.5
A = 1.83 m/s^2
You might be interested in
A box weighs 100N and its base area of 2 m2. What pressure does it exert on the ground?
kotegsom [21]

Answer:

P = F/S = 100/2 =50 (N/m2)

5 0
2 years ago
Light hits a mirror at a 45° angle. It will be reflected at an angle _____.
Eddi Din [679]
It will be equal to 45°
6 0
2 years ago
An alpha particle has a charge of +2e and a mass of 6.64 x 10-27 kg. It is accelerated from rest through a potential difference
kondor19780726 [428]

Answer:

a) v = 1.075*10^7 m/s

b) FB = 7.57*10^-12 N

c) r = 10.1 cm

Explanation:

(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:

K=qV          (1)

q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C

V: potential difference = 1.2*10^6 V

You replace the values of the parameters in the equation (1):

K=(3.2*10^{-19}C)(1.2*10^6V)=3.84*10^{-13}J

The kinetic energy of the particle is also:

K=\frac{1}{2}mv^2       (2)

m: mass of the particle = 6.64*10^⁻27 kg

You solve the last equation for v:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(3.84*10^{-13}J)}{6.64*10^{-27}kg}}\\\\v=1.075*10^7\frac{m}{s}

the sped of the alpha particle is 1.075*10^6 m/s

b) The magnetic force on the particle is given by:

|F_B|=qvBsin(\theta)

B: magnitude of the magnetic field = 2.2 T

The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

|F_B|=(3.2*10^{-19}C)(1.075*10^6m/s)(2.2T)=7.57*10^{-12}N

the force exerted by the magnetic field on the particle is 7.57*10^-12 N

c) The particle describes a circumference with a radius given by:

r=\frac{mv}{qB}=\frac{(6.64*10^{-27}kg)(1.075*10^7m/s)}{(3.2*10^{-19}C)(2.2T)}\\\\r=0.101m=10.1cm

the radius of the trajectory of the electron is 10.1 cm

6 0
3 years ago
The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both the plug and the sleeve
Katena32 [7]

Answer:

P=740 KPa

Δ=7.4 mm

Explanation:

Given that

Diameter of plunger,d=30 mm

Diameter of sleeve ,D=32 mm

Length .L=50 mm

E= 5 MPa

n=0.45

As we know that

Lateral strain

\varepsilon _t=\dfrac{D-d}{d}

\varepsilon _t=\dfrac{32-30}{30}

\varepsilon _t=0.0667

We know that

n=-\dfrac{\epsilon _t}{\varepsilon _{long}}

\varepsilon _{long}=-\dfrac{\epsilon _t}{n}

\varepsilon _{long}=-\dfrac{0.0667}{0.45}

\varepsilon _{long}=-0.148

So the axial pressure

P=E\times \varepsilon _{long}

P=5\times 0.148

P=740 KPa

The movement in the sleeve

\Delta =\varepsilon _{long}\times L

\Delta =0.148\times 50

Δ=7.4 mm

6 0
3 years ago
A ball is dropped from a building taking 3sec to fall to the ground. Calculate:
GenaCL600 [577]

Answer:

Vf = 29.4 m/s

h = 44.1 m

Explanation:

Data:

  • Initial Velocity (Vo) = 0 m/s
  • Gravity (g) = 9.8 m/s²
  • Time (t) = 3 s
  • Final Velocity (Vf) = ?
  • Height (h) = ?

==================================================================

Final Velocity

Use formula:

  • Vf = g * t

Replace:

  • Vf = 9.8 m/s² * 3s

Multiply:

  • Vf = 29.4 m/s

==================================================================

Height

Use formula:

  • \boxed{h=\frac{g*(t)^{2}}{2}}

Replace:

  • \boxed{h=\frac{9.8\frac{m}{s^{2}}*(3s)^{2}}{2}}

Multiply time squared:

  • \boxed{h=\frac{9.8\frac{m}{s^{2}}*9s^{2}}{2}}

Simplify the s², and multiply in the numerator:

  • \boxed{h=\frac{88.2m}{2}}

It divides:

  • \boxed{h=44.1\ m}

What is the velocity when falling to the ground?

The final velocity is <u>29.4 meters per seconds.</u>

How high is the building?

The height of the building is <u>44.1 meters.</u>

3 0
2 years ago
Other questions:
  • A ball having a mass of 200 g is released from rest at a height of 400 mm above a very large fixed metal surface. If the ball re
    5·1 answer
  • I need help on this please
    8·1 answer
  • What is the diffrence between fundamental and derived quantity . 2 diffrences please<br>​
    15·1 answer
  • What is necessary to designate a position? A. a reference point B. a direction C. fundamental units D. motion E. all of these
    15·1 answer
  • PLEASE ANSWER ASAP
    7·1 answer
  • Use the diagram below modeling a football kicked from a horizontal surface B
    6·2 answers
  • Which of the following best describes why understanding a watershed and its boundaries is important in designing housing develop
    5·1 answer
  • A car drives 24 meters to the left in three seconds what is the velocity of the car?
    5·1 answer
  • A 2.0-kg ball is at rest when a horizontal force of 5.0 N is applied. In the absence of friction, what is the speed of the ball
    8·1 answer
  • Optimists usually have a higher degree of wellness than pessimists.<br> O True<br> False
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!