The desert sand dunes seen here are created through the process of weathering and erosion
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase
Answer:
Hope this helps
molar mass: 170.21 g/mol
Explanation:
If it did plzz mark brainliest
Answer:
Al will have 3 dots
S will have 6 dots
Explanation:
Al is in group 13 or roman nummeral 3 so it will have 3 dots. S is in group 16 or roman nummeral 6 so it will have 6 dots.
Answer:
The bond angles between the axial bonding groups are slightly less than 180°.
The bond angles between the equatorial bonding groups are slightly less than 120°.
Explanation:
Accordign to VSEPR theory, a molecule with four bonding groups and one lone pair on the central atom has a trigonal bipyramidal electronic geometry.
The position of the lone pair can be located in the equatorial position or axial position.
When the lone pair is found in equatorial position, it has two axial groups that repel it and the angle of the lone pair between each axial group is 90°.
When the lone pair is in axial position it has 3 equatorial groups that repel it and the angle of the lone pair between each equatorial group is 90°.
Since the molecule has a lone pair, the most stable geometric structure is when the lone pair is in the equatorial position, because it has fewer repulsions than in the axial position.
The molecular geometry is "seesaw"
The bond angles between the axial bonding groups are slightly less than 180°.
The bond angles between the equatorial bonding groups are slightly less than 120°.