1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
6

A car travel with a constant velocity of 20.5m/s for 20seconds what distance does it cover in this time ?​

Physics
1 answer:
prohojiy [21]3 years ago
8 0

Answer:

410 m

Explanation:

Given:

v₀ = 20.5 m/s

a = 0 m/s²

t = 20 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²

Δx = 410 m

You might be interested in
What would be the best way for her to do this?
andrew-mc [135]
Need more info plz :)


5 0
4 years ago
The eagle drops the trout a height of 6.1 m the fish travels 7.9 m horizontaly before hitting the water what is the velocity of
Semenov [28]

The velocity of the eagle is 7.0 m/s

Explanation:

The motion of the fish is a projectile motion, which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction, where the horizontal velocity of the fish is equal to the horizontal velocity of the eagle

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction  

We start by analyzing the vertical motion, using the following suvat equation:

s=ut+\frac{1}{2}at^2

where:

s = 6.1 m is the vertical displacement of the fish

u = 0 is the initial vertical velocity of the fish

a=g=9.8 m/s^2 is the acceleration of gravity

t is the time

Solving for t, we find the time of flight of the fish:

t=\sqrt{\frac{2s}{a}}=\sqrt{\frac{2(6.1)}{9.8}}=1.12 s

Now we know that during this time, the fish travels a horizontal distance of

x = 7.9 m

Therefore, the horizontal velocity of the fish is

v_x = \frac{x}{t}=\frac{7.9}{1.12}=7.0 m/s

And therefore, this is the initial velocity of the eagle.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

6 0
4 years ago
A 5.0 kg book is lying on a 0.25 meter high table.
Wittaler [7]

Answer:

Below in the picture:-

I hope it helps.

3 0
2 years ago
You perform an experiment with a long column of air and a tuning fork. The column of air is defined by a very long vertical plas
velikii [3]

Answer:

\lambda=4L=1.33m

v=343m/s

Explanation:

We have to take into account the expressions

f=\frac{2n+1}{4}\frac{v_s}{L}\\L=(2n+1)\frac{\lambda}{4}

if we assume that 256Hz is the fundamental frequency we have

f=\frac{1}{4}\frac{v_s}{L}\\\\L=\frac{1}{4}\frac{v_s}{f}=\frac{1}{4}\frac{343\frac{m}{s}}{256Hz}=0.33m

and for wavelength

\lambda=4L=1.33m

hope this helps!!

6 0
3 years ago
Read 2 more answers
After an ice storm, ice falls from one of the top floors of a 65-story building. The ice falls freely under the influence of gra
adell [148]

Answer:

The correct answer is a) The kinetic energy of the ice increases by equal amounts for equal distances.

Explanation:

The law of conservation states that the energy cannot be created nor be destroyed but can be converted from one form to another.Before the ice even starts falling we already know that it possesses energy in the form of potential energy given by P=mgh where m is the mass of the ice , g is the acceleration due to gravity and h is the height of the ice above the ground whatever that may be, since a number is not given here.As the ice falls the energy is converted from potential energy to kinetic energy. We notice one thing about the equation for the potential energy P , which is that it is not only directly proportional to h but also is linear in h as well(which is the main reason why a) is correct) which means that if the ice drops by 1 meter the potential energy it will have lost would be ΔPE=mgΔh=-mg, where Δh is the change in its height which is 1 meter here.And according to the principle of conservation of energy this energy must be converted to kinetic energy so the ΔKE=-ΔPE=mg, and this process repeats and for each meter it falls, it picks up the same amount of kinetic energy equaling mg(which is the same as the loss in PE per each meter of fall). So a 2 meter decrease in height will result in an increase in KE of 2mg, a 3 meter decrease in height will result in an increase in KE of 3mg. gain in kinetic energy only depends on the drop in height, which is true irrespective of where the ice might happen to be in its journey close to the top or the bottom. So the drop in height of lets say x at any point in the journey will result in the same increase in KE = ΔKE = mgx. Which proves part a) to be correct.

7 0
3 years ago
Other questions:
  • The ratio between the volumes of two spheres is 27 to 8. what is the ratio between their respective radii?
    7·1 answer
  • Which property of potential energy distinguishes it from kinetic energy?
    7·2 answers
  • The sketch shows a painter’s scaffold in mechanical equilibrium. The person in the middle weighs 225 N, and the tension in each
    12·1 answer
  • Give 2 examples of mountain ranges in the world that have been caused by folding
    7·1 answer
  • The velocity versus time graph of particle A is tangent to the velocity versus time graph for particle B at point O. What is the
    11·1 answer
  • A box has sides of 10 cm, 8.2 cm, and 3.5 cm. What is its volume?
    6·1 answer
  • A driver of a car traveling at 15.0 m/s applies the brakes, causing a uni- form acceleration of −2.0 m/s2 . How long does it tak
    6·1 answer
  • Calcula qué tan lejos está Saturno del Sol, sabiendo que la luz solar necesita una hora y veinte segundos para llegar a Saturno.
    9·1 answer
  • If the radius of a coin is 1 cm then calculate its area.​
    11·2 answers
  • Forces come in pairs. What are these pairs called?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!