Answer: The property that will best provide evidence that the samples are solid includes:
--> if the substance has a definite shape,
-->if the substance has a definite volume
--> if it's tightly packed.
Explanation:
According to the kinetic theory of matter, every substance consist of very large number of very small particles called molecules. These molecules, which are made up of atoms that are the smallest particles of a substance that can exist in a free state.
Matter can exist in the following states:
--> Solid state
--> liquid state or
--> Gaseous state.
The general property of a substance that is in gaseous state includes:
--> Definite shape: A substance can be grouped as a solid if it's shape is fixed that is, it doesn't depend on the shape of other materials.
--> Definite volume: A substance can be grouped as a solid if it occupies its own shape. This is due to the force of cohesion among its molecules.
--> Tightly packed: A substance can be grouped as solid if the molecular movements of the particles are negligible.
From the samples under observation by Juan and kym, if the sample that possesses the above described qualities, it is a solid rather than liquid or gas.
Differences in land elevation result in rainfall runoff, and allow some of the original solar energy to be captured as hydro-electric power (Figure 1). Hydro power is currently the world's largest renewable source of electricity, accounting for 6% of worldwide energy supply or about 15% of the world's electricity.
hope this helps
mark brainliest :)
The green wavelengths are reflected, causing green to be the only color we see in certain parts of plants.
Best of luck, my man.
Answer:
the smallest radius of the circular path is 8.1 km
Explanation:
The computation of the smallest radius of the circular path is given below:
Given that
V = Velocity = 201 m/s
a_c = acceleration = 5 m/s^2
radius = ?
As we know that
a_c = V^2 ÷ r
5 = 201^2 ÷ r
r = 201^2 ÷ 5
= 8,080.2 g
= 8.1 km
Hence, the smallest radius of the circular path is 8.1 km
Answer:
875 N
Explanation:
From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because
Force = mass * acceleration, while
Acceleration = velocity / time, basically
Force = mass * velocity / time.
We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.
Going by the formula I stated, we can then say that
Force = 250 * 3.5 / 1
Force = 875 N
This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N