Answer:
See explanation
Explanation:
In looking at molecules to determine whether they are polar or not we have to look at two things basically;
i) presence of polar bonds
ii) geometry of the molecule
Now, we know that CCI2F2 is a tetrahedral molecule, but the molecule is not symmetrical. It has four polar bonds that are not all the same hence the molecule is polar.
In an electric field, polar molecules orient themselves in such a way that the positive ends of the molecule are being attracted to the negative plate while the negative ends of the molecules are attracted to the positive plate.
So the positive ends of CCI2F2 are oriented towards the negative plate of the field while the negative ends of CCI2F2 are oriented towards the positive ends of the field.
Answer:
It would Newton's third law.
Explanation:
Answer:
The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg
Explanation:
Heat gain by ice = Heat lost by water
Thus,
Heat of fusion + 
Where, negative sign signifies heat loss
Or,
Heat of fusion + 
Heat of fusion = 334 J/g
Heat of fusion of ice with mass x = 334x J/g
For ice:
Mass = x g
Initial temperature = 0 °C
Final temperature = 6 °C
Specific heat of ice = 1.996 J/g°C
For water:
Volume = 353 mL
Density of water = 1.0 g/mL
So, mass of water = 353 g
Initial temperature = 26 °C
Final temperature = 6 °C
Specific heat of water = 4.186 J/g°C
So,


345.976x = 29553.16
x = 85.4197 kg
Thus,
<u>The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg</u>
Answer:Since 1743 the Celsius scale has been based on 0 °C for the freezing point of water and 100 °C for the boiling point of water at 1 atm pressure. Prior to 1743 the values were reversed (i.e. the boiling point was 0 degrees and the freezing point was 100 degrees).
Explanation: i no it