Answer:
Kp = 1.41 x 10⁻⁶
Explanation:
We have the chemical equation:
2 A(g) + 3 B(g)⇌ C(g)
In which A and B are the reactants and C is the product. We calculate first the change in the number of moles of gas (Δn or dn):
dn= (sum moles products - sum moles reactants)
= (moles C - (moles A + moles B))
= (1 - (2+3))
= 1 - 5
= -4
We have also the following data:
Kc = 63.2
T= 81∘C + 273 = 354 K
R = 0.082 L.atm/K.mol (it is a constant)
Thus, we introduce the data in the mathematical expression for the relation between Kp and Kc:
= (0.082 L.atm/K.mol x 354 K)⁻⁴ = 1.41 x 10⁻⁶
The first word in the name of an ester is derived from the alcohol used in the esterification.
<h3>What is esterification?</h3>
Esterification is a chemical process where an organic acid with the formula is combined with an alcohol molecule having the chemical formula (ROH).
The process of esterification is known to produce an ester molecule and during this phenomenon is released water (H2O).
An example of an esterification reaction occurs when ethanoic acid (i.e., the active ingredient of vinegar) can react with C2H5OH (i.e., ethanol) in order to form the ethyl ethanoate molecule, which is a well-known ester molecule.
In conclusion, the first word in the name of an ester is derived from the Alcohol used in the esterification.
Learn more about esterification here:
brainly.com/question/14028062
#SPJ1
B) a molecule
A molecule is formed when two atoms join together with a covalent bond.
Answer:
The same number of molecules, 6.0 × 10²³ molecules.
Explanation:
The amount of any given gas that can be stored in a container depends on the <u>temperature, pressure and volume </u>of the container. It does not depend on the nature (or identity) of the gas.
So if a 10-liter flask contains 6.0 × 10²³ molecules of hydrogen gas, it will contain the same amount of molecules of any other gas when temperature and pressure remain constant.