One single covalent bond, hope this helps!
Assume an original volume of blood of one deciliter (100 ml). if 5 ml of oxygen diffuses into the blood, 100 ml will be its final volume.
A tissue is made up of white blood cells, platelets, red blood cells, and other elements suspended in a liquid. Blood transports waste away and delivers nutrients and oxygen to the tissues. The entire amount of fluid moving through the heart's arteries, capillaries, veins, venules, and chambers is referred to as blood volume. Red blood cells (erythrocytes), white blood cells (leukocytes), platelets, and plasma are the elements that give blood volume.
The amount of water and sodium ingested, expelled by the kidneys into the urine, and lost through the digestive system, lungs, and skin determines blood volume. The amounts of salt and water that are consumed and excreted vary greatly.
To know more about blood volume refer to: brainly.com/question/7313563
#SPJ4
Answer:
C. The reaction can be broken down and performed in steps
Explanation:
Hess's Law of Constant Heat Summation states that irrespective of the number of steps followed in a reaction, the total enthalpy change for the reaction is the sum of all enthalpy changes corresponding to all the steps in the overall reaction. The implication of this law is that the change of enthalpy in a chemical reaction is independent of the pathway between the initial and final states of the system.
To obtain MgO safely without exposing magnesium to flame, the reaction sequence shown in the image attached may be carried out. Since the enthalpy of the overall reaction is independent of the pathway between the initial and final states of the system, the sum of the enthalpy of each step yields the enthalpy of formation of MgO.
Answer:
northwest
Explanation:
Cmon man adleast try before you ask it on brainly or else you will never get any smarter
Answer:
0.362 moles
Explanation:
Mass of butane = 21g
Molar mass of carbon = 12g / mol
Molar mass of hydrogen = 1g/mol
Molar mass of butane ? = [(12*4) * (1*10)]
Molar mass of butane = 58g / mole
Number of moles = mass of molecules / molar mass of molecule
Number of moles = 21 / 58
Number of moles of butane = 0.362 moles
The number of moles in 21g of butane is 0.362 moles