Answer:
The spring force constant is
.
Explanation:
We are told the mass of the ball is
, the height above the spring where the ball is dropped is
, the length the ball compresses the spring is
and the acceleration of gravity is
.
We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy
is equal to the final mechanical energy
:

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

If we manipulate the equation we have that:




Hello!

Use the equation for momentum:

Plug in the given mass and velocity into the equation:


Answer:
Revise energy transfers and use sankey diagrams to calculate the efficiency of these conversions with BBC ... Efficiency is a measure of how much useful energy is converted. Part of ... This is the Sankey diagram for a typical filament lamp: 100 joules of electrical energy is converted to 10 joules of light energy and 90 joules.
Explanation: