Answer:

Explanation:
Given that:
Electrical field E = 
square side l = 5.0 m
Area A = 5.0 * 5.0
= 25.0 m²
Angle ( θ ) between area vector and E = (90° - 60°)
= 30°
The flux
can now be determined by using the expression
= 
=

=
= 
Answer:

Explanation:
F = Magnetic force = 0.018 N
B = Magnetic field = 0.03 T
L = Length of wire = 35 cm
= Angle between current and magnetic field = 
Magnetic force is given by

The magnitude of the current is
.
1. C
<span>2. G </span>
<span>3. H </span>
<span>4. J </span>
<span>5. B </span>
<span>6. I </span>
<span>7. D </span>
<span>8. E </span>
<span>9. A </span>
10. F and <span>For the best answers, search on this site </span>https://shorturl.im/FbQuG<span> </span><span>
</span>
<span>We can find the period P of one cycle, and then we can use the period to find the gravitational acceleration g on this planet.
P = (132 s) / (107 cycles) = 1.2336 s/cycle
The period P is 1.2336 seconds. This means that it takes 1.2336 seconds for the pendulum to swing back and forth one.
Now we can use the period P to find the gravitational acceleration g.
The equation for the period of a pendulum is as follows:
P = 2 pi \sqrt{L/g}
P^2 = (4 pi^2) L / g
g = (4 pi^2) L / P^2
g = (4)(pi^2)(0.540 m) / (1.2336 s)^2
g = 14.0 m/s^2
The acceleration of gravity on the planet is 14.0 m/s^2.</span>