Answer:
models are only used by scientists
Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:

Water sheds i hope this helps give me a brainiest answer
Answer:9m
Explanation:
Ball starts from rest . Time taken = 6 seconds. Distance travelled by ball. ∴Distance travelled = 9 m
Hope it helps you
Good luck
(a) 3.56 m/s
(b) 11 - 3.72a
(c) t = 5.9 s
(d) -11 m/s
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule.
y = 11t - 1.86t^2
y' = 11 - 3.72t
Now that you have the first derivative, it will give you the velocity as a function of t.
(a) Velocity after 2 seconds.
y' = 11 - 3.72t
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56
So the velocity is 3.56 m/s
(b) Velocity after a seconds.
y' = 11 - 3.72t
y' = 11 - 3.72a
So the answer is 11 - 3.72a
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.
(d) Plug in the value of t calculated for (c) into the velocity function, so:
y' = 11 - 3.72a
y' = 11 - 3.72*5.913978495
y' = 11 - 22
y' = -11
So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.