Answer:
The value is 
Explanation:
From the question we are told that
The current is 
The inductor is 
The voltage induced is 
Generally the emf induced is mathematically represented as

Here
is the time taken
=> 
=> 
=> 
Much energy as would Microraptor gui have to expend to fly with a speed of 10 m/s for 1.0 minutes is 486 J.
The first step is to find the energy that Microraptor must release to fly at 10 m/s for 1.0 minutes. The energy that Microraptor must expend to fly can be found using the relationship between Power and Energy.
P = E/t
Where:
P = power (W)
T = time (s)
Now, a minimum of 8.1 W is required to fly at 10 m/s. So, the energy expended in 1 minute (60 seconds) is
P = E/t
E = P x t
E = 8.1 x 60
E = 486 Joules
Thus, the energy that Microraptor must expend to fly at 10 m/s for 1.0 minutes is the 486 J.
Learn more about Microraptor gui here brainly.com/question/1200755
#SPJ4
Thank you for your question, what you say is true, the gravitational force exerted by the Earth on the Moon has to be equal to the centripetal force.
An interesting application of this principle is that it allows you to determine a relation between the period of an orbit and its size. Let us assume for simplicity the Moon's orbit as circular (it is not, but this is a good approximation for our purposes).
The gravitational acceleration that the Moon experience due to the gravitational attraction from the Earth is given by:
ag=G(MEarth+MMoon)/r2
Where G is the gravitational constant, M stands for mass, and r is the radius of the orbit. The centripetal acceleration is given by:
acentr=(4 pi2 r)/T2
Where T is the period. Since the two accelerations have to be equal, we obtain:
(4 pi2 r) /T2=G(MEarth+MMoon)/r2
Which implies:
r3/T2=G(MEarth+MMoon)/4 pi2=const.
This is the so-called third Kepler law, that states that the cube of the radius of the orbit is proportional to the square of the period.
This has interesting applications. In the Solar System, for example, if you know the period and the radius of one planet orbit, by knowing another planet's period you can determine its orbit radius. I hope that this answers your question.
hi brainly user! ૮₍ ˃ ⤙ ˂ ₎ა
⊱┈────────────────────────┈⊰

Considering that the pulley is fixed, the force applied should be equal to the weight of the object - of 400N.

Pulleys or pulleys are mechanical tools used to assist in the movement of objects and bodies. There are two types of pulleys: fixed and movable. While the fixed pulley changes the direction of force, the moving pulley helps to decrease the force needed to move the object or body in question.
As the statement only tells us a pulley, we must consider that it is fixed, <u>because generally when it is mobile, this information is highlighted in the question</u>.
In this way, a fixed pulley only changes the direction of the applied force. Thus, the force must have the same magnitude as the weight of the object to be moved. If the bucket weighs 400N, the force applied to the pulley must be 400N.
<u>Therefore, having a fixed pulley, the force applied must be equal to the weight of the object, and will be 400N.</u>
Answer:
Explanation:
As a skydiver falls, he accelerates downwards, gaining speed with each second. The increase in speed is accompanied by an increase in air resistance. This force of air resistance counters the force of gravity.