Answer:
C.) 1.5 kg
Explanation:
Start with the equation:

Plug in what you know, and solve:

Find matching soluation:
C.) 1.5 kg
Before going to solve this question first we have to understand specific heat capacity of a substance .
The specific heat of a substance is defined as amount of heat required to raise the temperature of 1 gram of substance through one degree Celsius. Let us consider a substance whose mass is m.Let Q amount of heat is given to it as a result of which its temperature is raised from T to T'.
Hence specific heat of a substance is calculated as-
![c= \frac{Q}{m[T'-T]}](https://tex.z-dn.net/?f=c%3D%20%5Cfrac%7BQ%7D%7Bm%5BT%27-T%5D%7D)
Here c is the specific heat capacity.
The substance whose specific heat capacity is more will take more time to be heated up to a certain temperature as compared to a substance having low specific heat which is to be heated up to the same temperature.
As per the question John is experimenting on sand and water.Between sand and water,water has the specific heat 1 cal/gram per degree centigrade which is larger as compared to sand.Hence sand will be heated faster as compared to water.The substance which is heated faster will also cools faster.
From this experiment John concludes that water has more specific heat as compared to sand.
According to Newton's Second Law of motion, the net force acting on the object is equal to its mass multiplied by its acceleration. In formula, it is written as
Net Force =mass * acceleration
Net force = 25 kg * 5m/s^2
Net force = 125 Newtons
Answer:
12.267 seconds approximately.
Explanation:
The units can be simplified into m/s, in which case you would have 61000/3600. Simplify that to 16 and 17/18. This is your meters per second, so multiply that by .724 to get the answer.
Answer:
D, I think.
Explanation:
I had a quiz in Plate Tectonics and there was 2 questions that are related to this, but not the exact question.
Which material rises from cracks in oceanic crust
-molten rock
Which is the first step in the seafloor spreading process?
-a crack forms in oceanic crust.
those are all right btw, so you can decide if the answer I told you is right or not.