Answer:
Magnetic field, 
Explanation:
Given that,
Velocity of electron, 
It enters a region of space where perpendicular electric and a magnetic fields are present.
Magnitude of electric field, 
We need to find the magnetic field will allow the electron to go through the region without being deflected.
Magnetic force on the electron,
.......(1)
Electric force on the electron, F = q E........(2)
From equation (1) and (2) we get:



B = 0.0002 T
or

Hence, this is the required solution.
Answer:
Objects that have like charges attract each other.
Objects that have opposite charges repel each other.
When fur is rubbed on the balloon electrons move from the balloon to the fur.
This is because the balloon's material is an insulator.
Electrons have negative charge.
Protons have a positive charge.
neutrons have no charge.
Explanation:
Answer:
E = {(Charge Density/2e0)*(1 - [z/(sqrt(z^2 - R^2))]}
R is radius = Diameter/2 = 0.210m.
At z = 0.2m,
Put z = 0.2m, and charge density = 2.92 x 10^-2C/m2, and constant value e0 in the equation,
E can be calculated at distance 0.2m away from the centre of the disk.
Put z = 0.3m and all other values in the equation,
E can be calculated at distance 0.3m away from the centre of the disk
<span>Since the force is applied at an angle from the
horizontal, we will use the horizontal component of this force in calculating
for the displacements.
From derivation, the Fx is:</span>
Fx = F cos φ
Where:
Fx = is the horizontal component of the force
F = total force
φ =
angle in radian = 37 * pi / 180 = 0.645 rad
Calculating: Fx = 30.0 N * cos(0.645)
Fx = 23.97 N = 24 N
Calculating for Work: W = Fx * d
A. W = 24 N * 15 m = 360 N
B. W = 24 N * 16 m = 384 N
C. W = 24 N * 12 m = 288 N
D. W = 24 N * 14 m = 336 N