Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than 2-methylpropane.
Using the answer from the first part, we know that 2.957 moles of bismuth have formed. Moreover, the molar ratio between bismuth and carbon monoxide is:
2 : 3
Using the method of ratios,
2 : 3
2.957 : CO
CO = (3 * 2.957) / 2
CO = 4.4355
4.436 moles of carbon monoxide will be formed
The mass fraction of sodium chloride is 0.0625
<h3>What is the mass fraction of sodium chloride in the solution?</h3>
The mass fraction of sodium chloride is the ratio of the mass of sodium chloride to the total mass of the solution.
The mass fraction of sodium chloride is determined as follows;
mass of sodium chloride = 20 g
- mass of water = volume * density
density of water = 1 g/mL
volume of water = 300 mL
mass of water = 300 mL * 1 g/mL
mass of water = 300 g
total mass of solution = 20 + 300 = 320 g
mass fraction of sodium chloride = 20/320
mass fraction of sodium chloride = 0.0625
Learn more about mass fraction at: brainly.com/question/14783710
#SPJ1
ΔΗ= -115.6 kJ/mol
H2 has a Mr of 2, so as mol=mass/mr we can work out that there are 4 moles of H reacting
Therefore we multiply -115.6 by 4 = -462.4