<span>A full valence electron shell.</span>
Answer:
Option 4 with o-h in the most polar bond, since the two atoms in the bond have the greatest difference in electronegativity. This is assuming there are no other factors in other atoms bound to either of the elements in the bond.
Explanation:
Answer:
18.22874999999973
I recommend you to round the nearest 1 d.p
Explanation:
<em>h</em><em>a</em><em>v</em><em>e</em><em> </em><em>a</em><em> </em><em>g</em><em>r</em><em>e</em><em>a</em><em>t</em><em> </em><em>d</em><em>a</em><em>y</em><em>!</em>
Answer:
The heat capacity for the sample is 0.913 J/°C
Explanation:
This is the formula for heat capacity that help us to solve this:
Q / (Final T° - Initial T°) = c . m
where m is mass and c, the specific heat of the substance
27.4 J / (80°C - 50°C) = c . 6.2 g
[27.4 J / (80°C - 50°C)] / 6.2 g = c
27.4 J / 30°C . 1/6.2g = c
0.147 J/g°C = c
Therefore, the heat capacity is 0.913 J/°C
A heterogeneous mixture is a mixture in which its components retain their identity. The correct answer is B.