Answer:
Explanation:
We know that the formula for acceleration is given by:
, where v = Final velocity
u= Initial velocity
Given : The driver of a car traveling 110 km/h slams on the brakes so that the car undergoes a constant acceleration.
i.e. u= 110 km/h
[∵ 1 km= 100 meters and 1 hour = 3600 seconds]
v= 0 m/s ( At brake , final velocity becomes 0)
t=4.5 seconds
Substitute all the values in the formula , we get

Hence, the average acceleration of the car during braking is
.
Answer:
L = L0 (1 + c T) where c is the coefficient and T the change in temperature
L = 50 ( 1 + 2.05E-6 * 50) = 50.0051 cm
Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Based on Newton's second law of motion, the net force applied to an object is equal to the product of the mass of the object and the acceleration it experiences. That is,
F = ma
If we are to assume that the net force is constant and that the mass is increased, the acceleration should therefore decrease in order to make constant the value at the right-hand side of the equation.
Answer:
C. Technician B
Explanation:
Excessive Galvanic activity:
To check for excessive galvanic activity, voltmeter is used to check the coolant. If the voltmeter is giving a reading greater than 0.5 V, there is excessive galvanic activity. Excessive galvanic activity is solved by flushing the coolant fluid from engine and refiling it.
Electrolysis problem:
When the system is not properly ground, the cooling system accepts stray current and the coolant becomes an electrolyte which might eat up the radiator. To test for excessive electrolysis, start the engine and turn on all electrical accessories, if the reading is more than 0.5 V, there is electrolysis problem. Ground wires and connections should be checked at this point to stop stray current.
In our case, the first reading is 0.2 V(engine turned off) which is normal and there is no excessive galvanic activity. This means that Technician A is not correct. The second reading is 0.8 V when the engine and all electrical accessories are turned on. This reading is greater than 0.5 V which means there is an electrolysis problem. This means that Technician B is correct and ground wires and connections should be inspected and repaired.