IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
The diameter of the column of the water as it hits the bucket is 4.04 cm
The equation of continuity occurs in the fluid system and it asserts that the inflow and the outflow of the volume rate at the inlet and at the outlet of the system are equal.
By using the kinematics equation to determine the speed of the water in the bucket and applying the equation of continuity to estimate the diameter of the column, we have the following;
Using the kinematics equation:




From the equation of continuity:







Since diameter = 2r;
∴
The diameter of the column of the water is:
= 2(2.02) cm
= 4.04 cm
Learn more about the equation of continuity here:
brainly.com/question/10822213
<span> an </span>input<span> device is (a piece of </span>computer<span> hardware equipment) used to provide data and control signals to an information processing system such as a</span>computer<span> or information appliance.</span>
Answer:
82 degrees
Explanation:
consider your staying point to be the center of a circle. this center has the coordinates (0, 0).
the radius of the circle is the distance you walked East (14 miles).
I assume your teacher means as "angle of displacement" the angle between the East-West line going through your starting point and the direct line from your starting point to your current position.
then the 100 miles North is tan(displacement angle)×14.
as it is the same, if you first went North and then East, or the other way around. you end up at the same point, with the same coordinates.
so, again.
100 = 14×tan(angle)
tan(angle) = 100/14 = 50/7 = 7.142857...
the displacement angle is then 82 degrees.
Answer:

Explanation:
The x- and y- components of the velocity vector can be written as following:


Since the angle θ and the magnitude of the velocity is given, the vector representation can be written as follows:
