Answer:
The cooling time will not be reduced.
Explanation:
The time to cook is virtually the same in both types, vigorously and gently boiling water.
The reason cooking of spaghetti calls for vigorously boiling water is to keep the pasta agitated so that they do not stick to one another.
The temperature of boiling water is the same for both vigorously boiling water and gently boiling water, therefore there will be little time difference in when the potatoes will cook when it is done with vigorously boiling water than when it is cooked with gently boiling water.
However cooking potatoes in vigorously boiling water may cause the water to dry up on time and the potatoes get burnt.
plasma is a superheated liquid
So, a would-be the correct option.
<span>Both electric and magnetic fields exert body forces, meaning they act from a distance. The like charges and poles in both repel; positive charge repels positive and the north pole repels the north pole. For both, the opposite poles/charges attract. Finally, only magnetic fields have poles, and there are two poles, namely the south and north, so they are dipolar.
The diagram that represents all of this information correctly is the third.</span>
Answer:
Protons and neutrons are heavy, Electrons are extremely light
Explanation:
Protons and neutrons are heavier than electrons and reside in the nucleus at the center of the atom. Electrons are extremely lightweight and exist in a cloud orbiting the nucleus.
Answer: See below
Explanation:
The Earth attracts the falling object with the same intensity of gravity as the object attracts the Earth, according to Newton's law of gravitation. The displacement of the two bodies, however, is inversely proportional to their respective masses.
Example: The Earth attracts a ball that falls 3 metres from the ground, even though the ball's mass is insignificant in comparison to the Earth's. Similarly, the ball draws the Earth with the same power, but the Earth's mass is enormously more than the ball's. As a result, the Earth collides with a billionth of a millimetre ball (or even less). Restart the Earth's descent on the ball you'll never see again.
|-----------|
| ANSWERED |
| BY |
| SHORTHAX |
|-----------|
(\__/) ||
(•ㅅ•) ||
/ づ