Speed of particle B is 2v₀/3 m/s to the left. Particle A and particle B will always have equal speed since they experience equal forces.
<h3>Conservation of energy</h3>
The speed and direction of the particle B is determined by applying the principle of conservation of energy as follows;
K.E₁ + P.E₁ = K.E₂ + P.E₂


At any given position, the speed of particle A and particle B will be equal, since they experience equal force and they have equal masses.
The complete question is below:
Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the system of two particles assosicated with the force is given by the equation U=G/r 2, where r is the distance between the two particles and G is a positive constant. At time t=T1 particle A is observed to be traveling with speed 2vo/3 to the left. The speed and direction of motion of particle B is ?
Learn more about conservation of energy here: brainly.com/question/166559
Answer:
prokaryotic cells have no nucleus but contain DNA.
I hope this helps
Everything starts from spectroscopy. Astronomers only have concentrated information at wavelengths that are emitted from the stars. What they do with this information is to obtain the frequency range of the stars and through spectroscopes they are responsible for dividing the radiation beams and determining the coincidence with the emission of those same waves, of chemical elements. From these observation techniques it is possible to obtain the composition and according to the color, obtaining characteristics such as temperature. The spectrum of stars consists of dark and bright lines called Fraunhofer lines. This spectrum is compared to the spectrum of different elements to find the composition of the stars. This is possible because the elements emit or absorb only specific wavelengths.