consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X =
t + (0.5)
t²
100 =
(4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y =
t + (0.5)
t²
0 =
(4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt((
)² + (
)²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg
When a wave is too steep to support itself, the wave front collapses therefore creating a break.
<h3>What is a Wave?</h3>
This is defined as the propagation of disturbance from one place to another in an organized manner.
In situations where the wave is too steep to support itself there is a break in the wavefront which advances up the shoreline.
Read more about Wave here brainly.com/question/6069116
Answer:
2+ charge
Explanation: The alkaline earth metals have two valence electrons in their highest-energy orbitals (ns2). They are smaller than the alkali metals of the same period, and therefore have higher ionization energies. In most cases, the alkaline earth metals are ionized to form a 2+ charge
Hope this helps, have a great day :)
Answer:
4541.8 J
Explanation:
First we find the mass of benzene available
mass = density x volume
= 0.867 x 34.1
= 29.5647 g
Then we find the amount of heat transferred by two processes:
heat tranferred = heat lost during temp drop + heat lost during freezing
= mcΔT + mL
= 29.5647 x 1.74 x (20.8 - 5.5) + 29.5647 x 127
= 4541.7883434 J
= 4541.8 J
Newton's third law of motion states that for any action, there is equal and opposite force. For a person standing on a floor, the action force is the weight and thus the floor must exert an opposite and equal reaction force equivalent in magnitude to the weight of the person.
In this regard, statement 3. is correct.