Answer:
1) Used in optical instruments such as telescopes.
2) Used to form mirages
Explanation:
1) Perhaps the simplest example of this is the astronomical refractor telescope with a right-angle eyepiece holder. Astro scopes mostly point at things high in the sky, but it is inconvenient to place your eye low to look up through the scope, so the light path is bent 90 degrees just before the eyepiece. This can be done with a mirror, but using a simple 45 degree prism (internal angles 45, 45, and 90 degrees) will do the 90 degree bend more efficiently.
2) So when a light pass from cold air to hot air light tends to bend from its path which is known as refraction. As the light get refracted it reaches to a point where the light tends to form 90 degree angle.
Velocity of molecules within a body
Answer:
(a) 2.5 m/s
(b) 37.5 KJ
Explanation:
(a)
From the law of conservation of momentum, Initial momentum=Final momentum

and making
the subject then
and since
is initial velocity of car, value given as 4 m/s,
is the initial velocity of the three cars stuck together, value given as 2 m/s and
is the final velocity which is unknown. By substitution

(b)
Initial kinetic energy is given by

Final kinetic energy is given by

The energy lost is given by subtracting the final kinetic energy from the initial kinetic energy hence
Energy lost=350-312.5=37.5 KJ
Answer:
Yes. Inertia keeps the speed maintained though my feet leave the ground.
Explanation:
Inertia is the resistance to the change in position of any object this means this resistance will keep me traveling at 30 km/s relative to the sun. If the person wants to change the position we apply force to do that because inertia is opposing us to not do that. We are always traveling with 30km/s relative to sun due to inertia.
Answer:
12.6 cm
Explanation:
We can use the mirror equation to find the distance of the image from the mirror:

where here we have
f = 9.50 cm is the focal length
p = 39 cm is the distance of the object from the mirror
Solving the equation for q, we find:
