Answer:
9.474 x 10^2
Explanation:
ok. first you have to get the value in the required unit so 9474mm/(10mm/cm) = 947.4 so scientific notation states that the number must be raised to any power of an integer and the value of the number being raised must be less than than 10 and more than or equal to 1
so it must have one digit in front so.. 947.4 becomes 9.474 and because you move 2 places to the left, ur power is positive 2
and proof 10^2 is 100 so multiply 9.474 by 100 and u will get 947.4 cm which is also 9474 mm
Explanation:
I don't know sorry ok I have some work so I m sorry
Answer:
They are magnetic lines and theses lines depict the invisible magnetic field around the magnet! Hope this helps I got it right on my quiz:)
Explanation:
Answer:
The correct statements are:
The rate of disappearance of B is twice the rate of appearance of C.
Explanation:
Rate of the reaction is a change in the concentration of any one of the reactant or product per unit time.
3A + 2B → C + 2D
Rate of the reaction:
![R=-\frac{1}{3}\times \frac{d[A]}{dt}=-\frac{1}{2}\times \frac{d[B]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![-\frac{1}{3}\times \frac{d[A]}{dt}=\frac{1}{1}\times \frac{d[C]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![-\frac{1}{3}\times \frac{d[A]}{dt}=\frac{1}{2}\times \frac{d[D]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
The rate of disappearance of B is twice the rate of appearance of C.
![\frac{1}{1}\times \frac{d[C]}{dt}=-\frac{1}{2}\times \frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![2\times \frac{1}{1}\times \frac{d[C]}{dt}=-\frac{1}{1}\times \frac{d[B]}{dt}](https://tex.z-dn.net/?f=2%5Ctimes%20%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
When a water vapor condenses, heat is being released from the process. This heat is called latent heat of vaporization since the phase change happens without any change in the temperature. This value is constant per mole of a substance as a function of pressure and temperature. For this problem, we are given the heat of vaporization at a certain T and P. We use this value to calculate the total heat released from the process. We calculate as follows:
Total heat released: 32.4 g ( 1 mol / 18.02 g ) (40.67 kJ / mol) = 73.12 kJ
Therefore, 73.12 kJ of heat is released from the condensation of 32.4 g of water vapor.