Half reaction: Cr₂O₇²⁻(aq) + 7H₂O(l) + 6e⁻ → 2Cr³⁺(aq) + 14OH⁻(aq).
Chromium change oxidation number from +6 in dichromate ion Cr₂O₇²⁻ to +3 in chromium cation.
Sum of the charges on the left side of the half reaction is -2 and on the left side is -8 (2·(+3) +14·(-1)), so six electrons must be added on the left side of half reaction.
Answer:
beta minus emission
Explanation:
Beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminum is used to block the beta radiation
²³⁹₉₃Np→ ²³⁹₉₄Pu + ⁰₋₁e
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
Answer:
Yes they woll react.
Explanation:
Ferous oxide and zinc will be product.
Answer:
0.99 kg O₂
1.9 kg SO₂
Explanation:
Let's consider the reaction between sulfur and oxygen to form sulfur dioxide.
S + O₂ → SO₂
The mass ratio of S to O₂ is 32.07:32.00. The mass of oxygen required to react with 1 kg of sulfur is:
1 kg S × (32.00 kg O₂/32.07 kg S) = 0.998 kg O₂
The mass ratio of S to SO₂ is 32.07:64.07. The mass of sulfur dioxide formed when 1 kg of sulfur is burned is:
1 kg S × (64.07 kg SO₂/32.07 kg S) = 1.99 kg SO₂
Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹