Answer:
SeF4 is a polar molecule
Explanation:
SeF4 is a polar molecule because a polar molecule is any molecule that have lone pairs of electrons in the central atom or have atoms that are electronegative and the electrons between that are covalently bonded are not evenly distributed.
The electronegative atoms of flourine in SeF4 are not evenly distributed and kind pairs of electrons are on the central atom.
Scientia, meaning knowledge and skill
The question is incomplete, complete question is :
Determine the pH of an HF solution of each of the following concentrations. In which cases can you not make the simplifying assumption that x is small? (
for HF is
.)
[HF] = 0.280 M
Express your answer to two decimal places.
Answer:
The pH of an 0.280 M HF solution is 1.87.
Explanation:3
Initial concentration if HF = c = 0.280 M
Dissociation constant of the HF = 

Initially
c 0 0
At equilibrium :
(c-x) x x
The expression of disassociation constant is given as:
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)


Solving for x, we get:
x = 0.01346 M
So, the concentration of hydrogen ion at equilibrium is :
![[H^+]=x=0.01346 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.01346%20M)
The pH of the solution is ;
![pH=-\log[H^+]=-\log[0.01346 M]=1.87](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B0.01346%20M%5D%3D1.87)
The pH of an 0.280 M HF solution is 1.87.
Hey there,
Your answer would be
Coefficients are placed in front of the reactants and/or products
Hope this helps,
<h2>- <em>Mr. Helpful</em></h2>
Answer:
The correct answer is 169.56 g/mol.
Explanation:
Based on the given information, the mass of Ag deposited is 1.24 g, and the mass of unknown metal X deposited in another cell is 0.650 g. The number of moles of electrons can be determined as,
= 1.24 g Ag * 1mol Ag/107.87 g/mol Ag * 1 mol electron/1 mol Ag ( the molecular mass of Ag is 107.87 g/mol)
= 0.0115 mole of electron
The half cell reaction for the metal X is,
X^3+ (aq) + 3e- = X (s)
From the reaction, it came out that 3 faraday will reduce one mole of X^3+.
The molar mass of X will be,
= 0.650 g/0.0115 *3 mol electron/1 mol
= 56.52 * 3
= 169.56 g/mol