Answer:
351.43mL
Explanation:
To calculate the original volume of hydrogen gas in this question, the Boyle's law equation will be used. Boyle's law equation is:
P1V1 = P2V2
Where; P1 = initial pressure
V1 = initial volume
P2 = final pressure
V2 = final volume
According to this question, the P1= 1.56atm, V1 = ?, P2 = 0.73atm, V2 = 751mL
Hence;
P1V1 = P2V2
1.56 × V1 = 0.73 × 751
1.56 V1 = 548.23
V1 = 548.23/1.56
V1 = 351.43mL
Therefore, the original volume of hydrogen gas is 351.43 mL.
D) refracted
because , the light changes direction.. causing the penny to look bigger than it is.
Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.
Answer:
a) r = k × [A] × [B]²
b) 3
Explanation:
Let's consider the following generic reaction
A + B + C ⇒ Products
The generic rate law is:
r = k × [A]ᵃ × [B]ᵇ × [C]ⁿ
where
This reaction is first order in A, second order in B, and zero order in C. The rate law is:
r = k × [A]¹ × [B]² × [C]⁰
r = k × [A] × [B]²
The overall order of the reaction is the sum of the individual reaction orders.
1 + 2 + 0 = 3
Answer:
Explanation:
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is ²³Na. The free metal does not occur in nature, and must be prepared from compounds.