1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
3 years ago
14

Neutrons released in a fission reaction can strike other nuclei and cause

Chemistry
1 answer:
Allushta [10]3 years ago
3 0

Answer:

Chain reaction

Explanation:

You might be interested in
A solution of starch at room temperature does not readily decompose to form a solution of simple sugars because
Basile [38]

Explanation:

The starch requires a temperature higher than the room temperature (arround 60 °C) to decompose to form simple sugars. This is because the energy required to break the chemical bonds. Also, it may need the action of some specific enzymes (alpha and beta amilase) to break those bonds.

6 0
3 years ago
Problem Page Question It takes to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbo
Marizza181 [45]

This is a incomplete question. The complete question is:

It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits

Answer: 344 nm

Explanation:

E=\frac{Nhc}{\lambda}

E= energy  = 348kJ= 348000 J  (1kJ=1000J)

N = avogadro's number = 6.023\times 10^{23}

h = Planck's constant = 6.626\times 10^{-34}Js


c = speed of light = 3\times 10^8ms^{-1}

348000=\frac{6.023\times 10^{23}\times 6.626\times 10^{-34}\times 3\times 10^8}{\lambda}

\lambda=\frac{6.023\times 10^{23}\times 6.626\times 10^{-34}\times 3\times 10^8}{348000}

\lambda=3.44\times 10^{-7}m=344nm    1nm=10^{-9}m

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm

5 0
3 years ago
Reaction 1: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g), ΔH1=−2043 kJ
Leokris [45]
Given teh equation adn the heat of reaction, reaction 2's heat of reaction can be obtained by simply multiplying teh heat of reaction of 1 by 3. The final answer is -6129 kJ. 
6 0
3 years ago
If 40.0 mL of a calcium nitrate solution reacts with excess potassium carbonate to yield 0.524 grams of a precipitate, what is t
tankabanditka [31]

Answer : The molarity of calcium ion on the original solution is, 0.131 M

Explanation :

The balanced chemical reaction is:

Ca(NO_3)_2+K_2CO_3\rightarrow CaCO_3+3KNO_3

When calcium nitrate react with potassium carbonate to give calcium carbonate as a precipitate and potassium nitrate.

First we have to calculate the moles of CaCO_3

\text{Moles of }CaCO_3=\frac{\text{Mass of }CaCO_3}{\text{Molar mass of }CaCO_3}

Given:

Mass of CaCO_3 = 0.524 g

Molar mass of CaCO_3 = 100 g/mol

\text{Moles of }CaCO_3=\frac{0.524}{100g/mol}=0.00524mol

Now we have to calculate the concentration of CaCO_3

\text{Concentration of }CaCO_3=\frac{\text{Moles of }CaCO_3}{\text{Volume of solution}}=\frac{0.00524mol}{0.040L}=0.131M

Now we have to calculate the concentration of calcium ion.

As, calcium carbonate dissociate to give calcium ion and carbonate ion.

CaCO_3\rightarrow Ca^{2+}+CO_3^{2-}

So,

Concentration of calcium ion = Concentration of CaCO_3 = 0.131 M

Thus, the concentration or molarity of calcium ion on the original solution is, 0.131 M

4 0
3 years ago
Oxalic Acid, a compound found in plants and vegetables such as rhubarb, has a mass percent composition of 26.7% C, 2.24% H, and
blondinia [14]

Answer:

HCO₂

Explanation:

From the information given:

The mass of the elements are:

Carbon C = 26.7 g;     Hydrogen H = 2.24 g     Oxygen O = 71.1 g

To determine the empirical formula;

First thing is to find the numbers of moles of each atom.

For Carbon:

=26.7 \ g\times \dfrac{1 \ mol }{12.01 \ g} \\ \\ =2.22 \ mol \ of \ Carbon

For Hydrogen:

=2.24 \ g\times \dfrac{1 \ mol }{1.008 \ g} \\ \\ =2.22 \ mol \ of \ Hydrogen

For Oxygen:

=71.1 \ g\times \dfrac{1 \ mol }{1.008 \ g} \\ \\ =4.44 \ mol \ of \ oxygen

Now; we use the smallest no of moles to divide the respective moles from above.

For carbon:

\dfrac{2.22 \ mol \ of \ carbon}{2.22} =1 \ mol \ of \ carbon

For Hydrogen:

\dfrac{2.22 \ mol \ of \ carbon}{2.22} =1 \ mol \ of \ hydrogen

For Oxygen:

\dfrac{4.44 \ mol \ of \ Oxygen}{2.22} =2 \ mol \ of \ oxygen

Thus, the empirical formula is HCO₂

4 0
3 years ago
Other questions:
  • The infrared radiation traveling toward Earth is _____.
    7·2 answers
  • Which balanced equation represents a redox reaction?
    6·2 answers
  • A sodium hydroxide solution that contains 24.8 grams of NaOH per L of solution has a density of 1.15 g/mL. Calculate the molalit
    8·1 answer
  • The figure above shows the electric field around a positive charge. Where is the field strongest
    7·1 answer
  • What is the second quantum number of a 2s^2 electron in phosphorus,
    5·1 answer
  • What part of an atom has most of its mass
    7·1 answer
  • For the reaction PCl5(g) + heat PCl3(g) + Cl2(g), what will happen when the volume is increased?
    14·1 answer
  • All of the following are uses of a lake/pond except:
    7·1 answer
  • Help me please ........
    9·1 answer
  • Extend your thinking: The slow decay of radioactive materials can be used to find the age of rocks, fossils, and archaeological
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!