To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation

Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,



PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is

At the same time we have that centripetal acceleration is given as

Replacing



Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Answer:
3675 J
Explanation:
Gravitational Potential Energy =
× mass × g × height
( g is the gravitation field strength )
Mass = 50 kg
G = 9.8 N/kg ( this is always the same )
Height = 15 m
Gravitational Potential Energy =
× 50 ×9.8 × 15
= 3675 J
Answer:197.504 N
Explanation:
Given
Two Charges with magnitude Q experience a force of 12.344 N
at distance r
and we know Electrostatic force is given



Now the magnitude of charge is 2Q and is at a distance of 

F'=16F
F'=197.504 N
The image formed by a plane mirror is virtual, upright and the same size with the actual object. The upright image of an object in a plane mirror is can be found on the other side of the mirror which is why it is also virtual.