Answer:
Carbonated drinks in cans have a headspace to avoid explosion
Explanation:
- When we see in carbonated drinks in cans we can see there is a small amount of space above the liquid level known as the headspace. This space is not a wasted space. The gas filled in the can is compressed highly which when opened comes out with a high pressure with an explosion.
- Therefore, to avoid the carbonated drinks not to explode when shaken the carbonated drinks and the bottled juices have headspace. This means the headspace is not wasted.
Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur. In both diffusion and osmosis, particles move from an area of higher concentration to one of lower concentration. Osmosis and facilitated diffusion both account for movement of molecules from a region of high concentration to a region of low concentration.
P = 11.133 atm (purple)
T = -236.733 °C(yellow)
n = 0.174 mol(red)
<h3>Further explanation </h3>
Some of the laws regarding gas, can apply to ideal gas (volume expansion does not occur when the gas is heated),:
- Boyle's law at constant T, P = 1 / V
- Charles's law, at constant P, V = T
- Avogadro's law, at constant P and T, V = n
So that the three laws can be combined into a single gas equation, the ideal gas equation
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
To choose the formula used, we refer to the data provided
Because the data provided are temperature, pressure, volume and moles, than we use the formula PV = nRT
T= 10 +273.15 = 373.15 K
V=5.5 L
n=2 mol

V=8.3 L
P=1.8 atm
n=5 mol

T = 12 + 273.15 = 285.15 K
V=3.4 L
P=1.2 atm

the compounds in which phosphorous posses the highest possible oxidation have to mention here.
The species in which phosphorous have the highest oxidation state are: H₃PO₄, P₂O₅, PCl₅
The possible oxidation state of phosphorous is III and V. The highest oxidation state is V. There are several compounds in which phosphorous posses the +5 oxidation state. Like- Phosphoric acid (H₃PO₄), phosphorous pentoxide (P₂O₅), Phosphorous chloride (PCl₅) etc.
The oxidation state of an element depends upon the valence electron the valence shell of phosphorous is 3s² 3p³. Thus there are 5 electrons, as it has vacant 3d orbital thus it can easily form compound having +5 oxidation state.
There are 5 layers. The Lithosphere, the Asthenosphere, the outer core, the inner core and the mantel.