1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
4 years ago
7

What is the frequency of light with a wavelength of 725 nm?

Physics
1 answer:
Dennis_Churaev [7]4 years ago
3 0
Frequency of light = speed of light/wavelength = 3x10⁸/725x10⁻⁹ =4.13 x 10¹⁴ Hz
You might be interested in
Strontium 3890Sr has a half-life of 28.5 yr. It is chemically similar to calcium, enters the body through the food chain, and co
patriot [66]

Answer:

Thus the time taken is calculated as 387.69 years

Solution:

As per the question:

Half life of ^{3890}Sr\, t_{\frac{1}{2}} = 28.5 yrs

Now,

To calculate the time, t in which the 99.99% of the release in the reactor:

By using the formula:

\frac{N}{N_{o}} = (\frac{1}{2})^{\frac{t}{t_{\frac{1}{2}}}}

where

N = No. of nuclei left after time t

N_{o} = No. of nuclei initially started with

\frac{N}{N_{o}} = 1\times 10^{- 4}

(Since, 100% - 99.99% = 0.01%)

Thus

1\times 10^{- 4} = (\frac{1}{2})^{\frac{t}{28.5}}}

Taking log on both the sides:

- 4 = \frac{t}{28.5}log\frac{1}{2}

t = \frac{-4\times 28.5}{log\frac{1}{2}}

t = 387.69 yrs

5 0
3 years ago
A 62 kg bungee jumper jumps from a bridge. She is tied to a bungee cord whose unstretched length is 12 m. She falls a total of 3
Andrew [12]

Answer:

k = 104.46 N/m

Explanation:

Here we can use energy conservation

so we will have

initial gravitational potential energy = final total spring potential energy

as we know that she falls a total distance of 31 m

while the unstretched length of the string is 12 m

so the extension in the string is given as

x = L - L_o

x = 31 - 12 = 19 m

so we have

mgH = \frac{1}{2}kx^2

62(9.81)(31) = \frac{1}{2}k (19^2)

k = 104.46 N/m

5 0
3 years ago
A typical electric refrigerator has a power rating of 500 Watts, which is the rate (J/s) at which electrical energy is supplied
Goshia [24]

Answer:

The rate of heat removed from inside the refrigerator is 300 watts.

Explanation:

By the First Law of Thermodynamics and the definition of a Refrigeration Cycle, we have the following formula to determine the rate of heat removed from inside the refrigerator (\dot Q_{L}), in watts:

\dot Q_{L} = \dot Q_{H}-\dot W (1)

Where:

\dot Q_{H} - Rate of heat released to the room, in watts.

\dot W - Rate of electric energy needed by the refrigerator, in watts.

If we know that \dot Q_{H} = 800\,W and \dot W = 500\,W, then the rate of heat removed from inside the refrigerator is:

\dot Q_{L} = \dot Q_{H}-\dot W

\dot Q_{L} = 300\,W

The rate of heat removed from inside the refrigerator is 300 watts.

3 0
3 years ago
For Part A, Sebastian decided to use the copper cylinder. How would the magnitude of his q and ∆H compare if he were to redo Par
Vitek1552 [10]

The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

The given parameters;

  • <em>initial temperature of metals, =  </em>T_m<em />
  • <em>initial temperature of water, = </em>T_i<em> </em>
  • <em>specific heat capacity of copper, </em>C_p<em> = 0.385 J/g.K</em>
  • <em>specific heat capacity of aluminum, </em>C_A = 0.9 J/g.K
  • <em>both metals have equal mass = m</em>

The quantity of heat transferred by each metal is calculated as follows;

Q = mcΔt

<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_p = (m_wc_w + m_pc_p)(T_m - T_i)\\\\Q_p = (T_m - T_i)(m_wc_w ) + (T_m - T_i)(m_pc_p)\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m_p(T_m - T_i)\\\\m_p = m\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m(T_m - T_i)\\\\let \ (T_m - T_i)(m_wc_w )  = Q_i, \ \ \ and \ let \ (T_m- T_i) = \Delta t\\\\Q_p = Q_i + 0.385m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

\Delta H = Q_p - Q_i\\\\\Delta H = (Q_i + 0.385m \Delta t) - Q_i\\\\\Delta H = 0.385 m \Delta t

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_A = (m_wc_w + m_Ac_A)(T_m - T_i)\\\\Q_A = (T_m -T_i)(m_wc_w) + (T_m -T_i) (m_Ac_A)\\\\let \ (T_m -T_i)(m_wc_w)  = Q_i, \ and \ let (T_m - T_i) = \Delta t\\\\Q_A = Q_i \ + \ m_Ac_A\Delta t\\\\m_A = m\\\\Q_A = Q_i \ + \ 0.9m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

\Delta H = Q_A - Q_i\\\\\Delta H = (Q_i + 0.9m\Delta t) - Q_i\\\\\Delta H = 0.9m\Delta t

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

Learn more here:brainly.com/question/15345295

6 0
3 years ago
The index of refraction of a substance is 1.5. Find the sine of the angle of refraction if the sine of the angle of incidence is
Mariulka [41]
We can answer the problem by Snell's Law:

Snell's law<span> (also known as </span>Snell<span>–Descartes </span>law<span> and the </span>law<span> of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.</span>
7 0
3 years ago
Other questions:
  • A plastic rod that has been charged to -21 nc touches a metal sphere. afterward, the rod's charge is -8 nc. (a) what kind of cha
    13·1 answer
  • Describe how the total mass of the particles before the reaction occurs compares to the total mass of the particles produced by
    9·1 answer
  • Newton’s third law explains what happens when two objects ______.
    15·1 answer
  • I need Help ASAP, and actually help, not just for the points.
    11·2 answers
  • The freezing point of water is the same as its
    15·2 answers
  • A circuit has a current of 1.2 A. If the voltage decreases to one-third of its original amount while the resistance remains cons
    5·1 answer
  • The form of energy that can move from place to place across the universe is . On Earth, the main source of this energy is .
    8·2 answers
  • When the starter motor on a car is engaged, there is a 310 A current in the wires between the battery and the motor. Suppose the
    5·1 answer
  • An elevator does 9.75 x 10(4) J of work on a person riding up to another floor. How much energy does the person gain
    12·1 answer
  • A............... pulley helps us by changing the direction of the applied effort​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!