The acceleration of the box up the ramp is 9.65 m/s².
<h3>
What is the magnitude of acceleration of the box?</h3>
The magnitude of the acceleration of the box is calculated by applying Newton's second law of motion as shown below;
F(net) = ma
where;
- m is the mass of the box
- a is the acceleration of the box
The net force on the box is calculated as follows;
F(net) = F - Ff
F(net) = F - μmgcosθ
where;
- θ is the inclination of the plane
- μ is coefficient of friction
F(net) = 170 - (0.3 x 15 x 9.8 x cos55)
F(net) = 144.7
The acceleration of the box is calculated as;
a = F(net) / m
a = (144.7) / (15)
a = 9.65 m/s²
Thus, the acceleration of the box up the ramp is 9.65 m/s².
Learn more about acceleration here: brainly.com/question/14344386
#SPJ4
By definition, the potential energy is:
U = qV
Where,
q: load
V: voltage.
Then, the kinetic energy is:
K = mv ^ 2/2
Where,
m: mass
v: speed.
As the power energy is converted into kinetic energy, we have then:
U = K
Equating equations:
qV = mv ^ 2/2
From here, we clear the speed:
v = root (2qV / m)
Substituting values we have:
v = root ((2 * (1.60218 × 10 ^ -19) * 3600) /9.10939×10^-31))
v = 3.56 × 10 ^ 7 m / s
Then, the centripetal force is:
Fc = Fm
mv ^ 2 / r = qvB
By clearing the magnetic field we have:
B = mv / qr
Substituting values:
B = (9.10939 × 10 ^ -31) * (3.56 × 10 ^ 7) / (1.60218 × 10 ^ -19) * 0.059
B = 3.43 × 10 ^ -3 T
Answer:
A magnetic field that must be experienced by the electron is:
B = 3.43 × 10 ^ -3 T
Answer:
1.2 seconds
Explanation:
distance = ((final speed + initial speed) * time)/2
Here given:
Solving steps:
3.8 = ((0 + 6.4) * time))/2
3.8 = 3.2(time)
time = 3.8/3.2
time = 1.1875 seconds ≈ 1.2 seconds
The answer would be 20000
The answer in standard form/scientific notation would be 2 x 10^4
(The exponent is 4 because that's how many digits after the 2 there is)
Answer: *360 mph*
Explanation:
I am pretty sure that it is 360 mph
3 times 120 = 360