It has to be D because the arrow will drop as it moves, if it were a gun, you'd lead the target so fire below it, but due to it being an arrow, you aim high not low. Also, they didnt specify how fast anything is, so you'd probably miss if you actually did it.
The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1
Answer:
Given:
Initial velocity (u) = 30 m/s
Final speed (v) = 0 m/s
Acceleration (a) = - 1.5 m/,s²
To Find:
Time in which train will come to rest (t).
Explanation:
So,
Time in which train will come to rest = 20 seconds
Answer:
none of the above
Explanation:
im pretty positive this is the answer tell me if i am wrong please