1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
please give me brainlist and follow
Explanation:
Formula for number of images formed by two plane mirrors incident at an angle θ is n = 360∘θ. If n is even, the number of images is n-1, if n is an odd number of images.
Answer:
The structure of Germanium crystals will be destroyed at higher temperature. However, Silicon crystals are not easily damaged by excess heat. Peak Inverse Voltage ratings of Silicon diodes are greater than Germanium diodes. Si is less expensive due to the greater abundance of element.
There are lots of variables that directly and indirectly contribute to the presence of gas on a surface
if the size of a planet is relatively small it will in turn be that of a smaller area which results in the less area to be covered for gas which basically means higher presence
I can go in depth more but I don't think that would be necessary all you need to know is this ...based on the size and gas will in turn be parallel to it's conformity
Answer:
Decreases.
Explanation:
Electric potential energy is the potential energy which is associated with the configuration of points charge in a system and it is the result of conservative coulomb force.
When the negatively charge ion is at the position of the negative probe than its potential energy is positive when it is move towards the positive probe it's potential energy becomes negative due to the negative ion.
Therefore, potential energy is decreases when negative charge ion moves through the water from negative probe to positive probe.