Answer:
Though the question is not specified here, but this information can determine the following quantity: period T= 6 secs, Frequency F=1/6 Hz, speed of rotation V= 2 pi ft/sec and wave length =pi/3 ft
Explanation:
Answer:
α = 1.32 rad/s²
Explanation:
given,
diameter of the bicycle = 0.8 m
radius of the bicycle = 0.4 m
initial speed of the bicyclist,u = 0 m/s
final speed of the bicyclist,v = 22 Km/h = 22 x 0.278
= 6.12 m/s
time,t = 11.6 s
acceleration =
=
=0.53 m/s²
we know,
a = α r


α = 1.32 rad/s²
the angular acceleration of the wheels is equal to α = 1.32 rad/s²
Answer:
A
Explanation:
Let's rule out some of the options. C makes no sense because static charges will create electric fields only, so the charge has to move. D makes no sense because monopoles do not exist. We can rule out B because when a charge is moving at a constant velocity. You can use Maxwell's equations and general relativity to figure out that at a constant velocity, you can't produce an electromagnetic wave because there is no magnetic field. Therefore the answer is A. When you have an oscillating or accelerating electric charge, you will produce an EM wave.
Answer:
mixture of all colors of ligjt