As per Faraday's law of induction we know that induced EMF in a conducting closed loop is equal to rate of change in flux in that loop
So here we have

now when we move out a coil from magnetic field then in this case there will be EMF induced in that coil as here magnetic flux is changing with time linked with the coil.
Now this induced voltage will remain constant if coil is moved out uniformly
But it will not remain constant if coil is moved out with non uniform speed
So this statement is not always true
so answer must be
<u>FALSE</u>
The answer is:
________________________________________
"longshore drift" .
___________________________________________
My teacher taught me that besides the type of wave, wavelength doesn't change unless you shorten the wave, and she used string as an example. Making the string shorter causes the wavelength to decrease so it can't be B. Your answer is A
Answer:
sorry- but what........?!
Answer:
No, the pendulum's period of oscillation does not depend on initial angular displacement.
Explanation:
Given that,
For small angle, the pendulum's period of oscillation depend on initial angular displacement from equilibrium.
We know that,
The time period of pendulum is defined as

Where, l = length of pendulum
g = acceleration due to gravity
So, The time period of pendulum depends on the length of pendulum and acceleration due to gravity.
It does not depend on the initial angular displacement.
Hence, No, the pendulum's period of oscillation does not depend on initial angular displacement.