That's THERMAL energy, often referred to as "heat".
Answer:
Newton's second law
Explanation:
The relationship between mass and acceleration is described in Newton's Second Law of Motion. His Second Law states that the more mass an object has, more force is necessary for it to accelerate.
Answer:
The total energy of the composite system is 7.8 J.
Explanation:
Given that,
Height = 0.15 m
Radius of circular arc = 0.27 m
Suppose, the entire track is friction less. a bullet with a m₁ = 30 g mass is fired horizontally into a block of wood with m₂ = 5.29 kg mass. the acceleration of gravity is 9.8 m/s.
Calculate the total energy of the composite system at any time after the collision.
We need to calculate the total energy of the composite system
Total energy of the system at any time = Potential energy of the system at the stopping point


Put the value in to the formula


Hence, The total energy of the composite system is 7.8 J.
Competition in the Los Angeles Flower District results in better quality flowers.
<h3>Why quality is the standard in flower competition?</h3>
Competition results in better quality flowers because in the competition, best quality of flowers will be selected as a winner so the competitors produces best quality of flowers in order to claim the prize so we can conclude that Competition in the Los Angeles Flower District results in better quality flowers
Learn more about competition here: brainly.com/question/25605883
Answer:
Temperature of the gas molecules is 7.96 x 10⁴ K
Explanation:
Given :
Ions accelerated through voltage, V = 10.3 volts
The work done to change the position of singly charged gas ions is given by the relation :
W = q x V
Here q is charge of the ions and its value is 1.6 x 10⁻¹⁹ C.
Average kinetic energy of gas molecules is given by the relation:
K.E. = 
Here T is temperature and k is Boltzmann constant and its value is 1.38 x 10⁻²³ J/K.
According to the problem, the average kinetic energy of gas is equal to the work done to move the singly charged ions, i.e. ,
K.E. = W

Rearrange the above equation in terms of T :

Substitute the suitable values in the above equation.

T = 7.96 x 10⁴ K