Answer:
a. 32.67 rad/s² b. 29.4 m/s²
Explanation:
a. The initial angular acceleration of the rod
Since torque τ = Iα = WL (since the weight of the rod W is the only force acting on the rod , so it gives it a torque, τ at distance L from the pivot )where I = rotational inertia of uniform rod about pivot = mL²/3 (moment of inertia about an axis through one end of the rod), α = initial angular acceleration, W = weight of rod = mg where m = mass of rod = 1.8 kg and g = acceleration due to gravity = 9.8 m/s² and L = length of rod = 90 cm = 0.9 m.
So, Iα = WL
mL²α/3 = mgL
dividing through by mL, we have
Lα/3 = g
multiplying both sides by 3, we have
Lα = 3g
dividing both sides by L, we have
α = 3g/L
Substituting the values of the variables, we have
α = 3g/L
= 3 × 9.8 m/s²/0.9 m
= 29.4/0.9 rad/s²
= 32.67 rad/s²
b. The initial linear acceleration of the right end of the rod?
The linear acceleration at the initial point is tangential, so a = Lα = 0.9 m × 32.67 rad/s² = 29.4 m/s²
Shadows are formed when an opaque object or an object that doesn't allow light to pass through is in the way or infront of etc. a source of light.
Answer:
The car is going 0 km/h more than the bike
Explanation:
Answer:
Kf > Ka = Kb > Kc > Kd > Ke
Explanation:
We can apply
E₀ = E₁
where
E₀: Mechanical energy at the beginning of the motion (top of the incline)
E₁: Mechanical energy at the end (bottom of the incline)
then
K₀ + U₀ = K₁ + U₁
If v₀ = 0 ⇒ K₀
and h₁ = 0 ⇒ U₁ = 0
we get
U₀ = K₁
U₀ = m*g*h₀ = K₁
we apply the same equation in each case
a) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
b) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
c) U₀ = K₁ = m*g*h₀ = 35 Kg*9.81 m/s²*4m = 1373.40 J
d) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*16m = 1098.72 J
e) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*4m = 274.68 J
f) U₀ = K₁ = m*g*h₀ = 105 Kg*9.81 m/s²*6m = 6180.30 J
finally, we can say that
Kf > Ka = Kb > Kc > Kd > Ke