Answer:
<h2>Density = 0.00026 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of air = 1.2 g
volume = 4,555 mL
Substitute the values into the above formula and solve for the density
That's
<h3>

</h3>
= 0.0002634
We have the final answer as
<h3>Density = 0.00026 g/mL</h3>
Hope this helps you
Answer:
HOFO = (0, 0, +1, -1)
Explanation:
The formal charge (FC) can be calculated using the following equation:

<u>Where:</u>
V: are the valence electrons
N: are the nonbonding electrons
B: are the bonding electrons
The arrange of the atoms in the oxyacid is:
H - O₁ - F - O₂
Hence, the formal charge (FC) on each of the atoms is:
H: FC = 1 - 0 - 1/2*(2) = 0
O₁: FC = 6 - 4 - 1/2*(4) = 0
F: FC = 7 - 4 - 1/2*(4) = +1
O₂: FC = 6 - 6 - 1/2*(2) = -1
We can see that the negative charge is in the oxygen instead of the most electronegative element, which is the F. This oxyacid is atypical.
I hope it helps you!
The correct answer is option A.
D = M/V
The density of a substance is the ratio of its mass to its volume.
Density = mass / volume
or D = M/V
The unit of density is gram per milliliter or g/ml, when mass is expressed in gram or g and the volume is expressed in milliliter ml.
If we know the mass and volume of a substance we can calculate its density using the formula for density.