Umm do height times width mabe
0.164 g/L is the density of a sample of 1.00 mole of
at 793mmhg and -9.00 degrees celcius.
<h3>What is density?</h3>
Density is the mass of a unit volume of a material substance. The formula for density is d =
, where d is density, M is mass, and V is volume.
Given data:
n = 1.00 mole
P=793 mm hg =1.04342 atm
T=-9.00 degree celcius = -9.00 + 273= 264 K
V=?
Using Ideal Gas Law equation:
PV = n R T
R = gas constant = 0.082057 L-atm/(mol-K)
(1.04342 atm)(V) = 5 X 0.082057 L-atm/(mol-K) X 264 K
V = 103.67 Liters
Now calculate density:
Mole weight of
= 1.00 mole
So, the mass of
= 17.031 g
Density =
Density =
= 0.164 g/L
Hence, 0.164 g/L is the density of a sample of 1.00 mole of
at 793mmhg and -9.00 degrees celcius.
Learn more about the density here:
brainly.com/question/15164682
#SPJ1
The reactant in aerobic respiration is oxygen (answer C)
I'm assuming that by "miles" you mean moles.
If O2 is the excess reactant, that means Fe is the limiting reactant. That means that the amount of product being formed depends on the amount of Fe reactant present. To calculate the moles of Fe2O3 formed, start with the given 6.4 moles of Fe and use the mole to mole ratio given by the reaction as shown below:
6.4 mol Fe x

=
3.2 mol Fe2O3
Answer: 9.18 Litres
Standard Temperature and Pressure (STP). Think of this as the perfect environment where the Temp. is 0°C or 273 Kelvin and Pressure is always 1 atm. This is only true in STP.
This question uses the Ideal Gas Equation:
PV=nRT
P= 1 atm
V = ??
T = 273 K (always convert to Kelvin unless told otherwise)
n = 0.410 mol
R = 0.0821 L.atm/mol.K
What R constant to use depends on the units of the other values. (look at the attachments) The units cancel out and only Litres is left. You simply multiply the values.