1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
4 years ago
10

A budding magician holds a 2.24-mW laser pointer, wondering whether he could use it to keep an object floating in the air with t

he radiation pressure. This might be an idea for a new trick! Assuming the laser pointer has a circular beam 3.00 mm in diameter and the magician rigs up a totally reflecting sail on which to shine the laser, what is the maximum weight the magician could suspend with this technique?
Physics
1 answer:
Sonbull [250]4 years ago
7 0

Answer:

 W = 1.49 10⁻¹¹ kg

Explanation:

For this problem, let's use Newton's equation of equilibrium

           F - W = 0

            F = W              (1)

Strength can be found from the definition of pressure

        P = F / A

        F = P A

   

The radiation pressure for a reflective surface is

            P = 2 I / c)

   

We substitute in equation 1

         2 I / c  A = W

The intensity is defined by the ratio of the power between the area

          I = P / A

          P = I A

We substitute

          2 P / c = W

   

           W = 2  2.24 10-3 / 3 108

           W = 1.49 10⁻¹¹ kg

You might be interested in
Mutations are always harmful. <br> true or false
masha68 [24]

Answer:

false

Explanation:

some can be harmful but not all

5 0
3 years ago
Read 2 more answers
How do i calculate the net force of the following question.Plz answer correctly
oee [108]
<h2>Explanation:</h2><h2><em><u>force</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m</u></em><em><u>a</u></em><em><u>s</u></em><em><u>s</u></em><em><u>×</u></em><em><u>acceleration</u></em></h2>

<em><u>m</u></em><em><u>a</u></em><em><u>s</u></em><em><u>s</u></em><em><u>=</u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u>c</u></em><em><u>e</u></em><em><u>=</u></em><em><u>5</u></em><em><u>0</u></em>

<em><u>(</u></em><em><u>a</u></em><em><u>)</u></em><em><u> </u></em><em><u>5</u></em><em><u>0</u></em><em><u>÷</u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em>

<h2><em><u>b</u></em><em><u>e</u></em><em><u>c</u></em><em><u>a</u></em><em><u>u</u></em><em><u>s</u></em><em><u>e</u></em><em><u> </u></em><em><u>w</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>o</u></em><em><u>n</u></em><em><u>'</u></em><em><u>t</u></em><em><u> </u></em><em><u>h</u></em><em><u>a</u></em><em><u>v</u></em><em><u>e</u></em><em><u> </u></em><em><u>a</u></em><em><u>c</u></em><em><u>c</u></em><em><u>e</u></em><em><u>l</u></em><em><u>e</u></em><em><u>r</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>w</u></em><em><u>h</u></em><em><u>i</u></em><em><u>c</u></em><em><u>h</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u>n</u></em><em><u> </u></em><em><u>a</u></em><em><u>s</u></em><em><u> </u></em><em><u>m</u></em><em><u>/</u></em><em><u>s</u></em><em><u>2</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>a</u></em><em><u>t</u></em><em><u> </u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u>s</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u>t</u></em><em><u>e</u></em><em><u>r</u></em><em><u> </u></em><em><u>p</u></em><em><u>e</u></em><em><u>r</u></em><em><u> </u></em><em><u>s</u></em><em><u>e</u></em><em><u>c</u></em><em><u>o</u></em><em><u>n</u></em><em><u>d</u></em><em><u>s</u></em><em><u> </u></em><em><u>square</u></em><em><u> </u></em><em><u>.</u></em><em><u> </u></em><em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u> </u></em><em><u>pls</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>l</u></em><em><u>l</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>a</u></em><em><u>n</u></em><em><u>k</u></em><em><u> </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em></h2>
5 0
3 years ago
A horse walks along a straight path. it travels 3 in one second, 4 m in the next second, and 5 m in the third second. describe t
Temka [501]

Answer: The horse is moving with a uniform acceleration

Explanation:

According to the described situation, we are dealing with a <u>constant acceleration</u> (also called <u>uniform acceleration</u>), since the horse's velocity is changingn by a constant rate.

Let's prove it:

Firstly we are told the horse follows a straight path. In addition we are given its velocity:

3 m/s, then 4 m/s and 5 m/s

Since acceleration a is defined as the change of velocity in time we can calculate it:

a\frac{4 m/s-3 m/s}{1 s}=1m/s^{2} This is the horse's constant acceleration

3 0
3 years ago
One end of a string is fixed. An object attached to the other end moves on a horizontal plane with uniform circular motion of ra
sveticcg [70]

Answer:

If both the radius and frequency are doubled, then the tension is increased 8 times.

Explanation:

The radial acceleration (a_{r}), measured in meters per square second, experimented by the moving end of the string is determined by the following kinematic formula:

a_{r} = 4\pi^{2}\cdot f^{2}\cdot R (1)

Where:

f - Frequency, measured in hertz.

R - Radius of rotation, measured in meters.

From Second Newton's Law, the centripetal acceleration is due to the existence of tension (T), measured in newtons, through the string, then we derive the following model:

\Sigma F = T = m\cdot a_{r} (2)

Where m is the mass of the object, measured in kilograms.

By applying (1) in (2), we have the following formula:

T = 4\pi^{2}\cdot m\cdot f^{2}\cdot R (3)

From where we conclude that tension is directly proportional to the radius and the square of frequency. Then, if radius and frequency are doubled, then the ratio between tensions is:

\frac{T_{2}}{T_{1}} = \left(\frac{f_{2}}{f_{1}} \right)^{2}\cdot \left(\frac{R_{2}}{R_{1}} \right) (4)

\frac{T_{2}}{T_{1}} = 4\cdot 2

\frac{T_{2}}{T_{1}} = 8

If both the radius and frequency are doubled, then the tension is increased 8 times.

5 0
3 years ago
I REALLY NEED HELP ON PHYSICS!!!<br> 10 POINTS
aleksley [76]

Answer:

25.021 sec

Explanation:

v=d/t

-2.33= - 58.3/t

t= - 58.3/-2.33

t=25.021 sec

6 0
3 years ago
Other questions:
  • ir temperature in a desert can reach 58.0°C (about 136°F). What is the speed of sound (in m/s) in air at that temperature?
    9·1 answer
  • A certain lightning bolt moves 10.0 C of charge. How many charges have been moved if the fundamental unit of charge is 1.6 x 10-
    12·1 answer
  • A child wants to pump up a bicycle tire so that its pressure is 1.2 × 105 pa above that of atmospheric pressure. if the child us
    11·2 answers
  • If your heart is not strong enough or efficient enough, it is difficult to (3 points)
    13·2 answers
  • (repost because nobody answered my last one)
    15·1 answer
  • How does a mirror affect the path of light?
    10·1 answer
  • Why do we need to use telescopes that are sensitive to other types of radiation
    9·1 answer
  • A 0.10 kg stone is thrown from the edge of an ocean cliff with an initial speed
    14·1 answer
  • 1. Los experimentos se llevan a cabo para
    7·1 answer
  • What is the magnitude of a point charge whose electric field 50cm away has a magnitude of 2N/C
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!