Answer:
1.23 M
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of NaCl = 7.2 g
As we know , the molecular mass of NaCl = 58.5 g/mol
Moles is calculated as -
n = w / m = 7.2 g / 58.5 g/mol = 0.123 mol
Molarity is calculated as -
V = 100ml = 0.1 L (since , 1 ml = 1/1000L )
M = n / V = 0.123 mol / 0.1 L = 1.23 M
The balanced thermochemical equation is
KBr ------- K + 1/2 Br2
<h3>What is thermochemical equation? </h3>
A Thermochemical Equation is defined as the balanced stoichiometric chemical equation which includes the enthalpy change, ΔH.
The chemical equation for the decomposition of potassium bromide to its constituent elements bromine ans potassium :
KBr ----- K + Br2
The balanced thermochemical equation of the decomposition of potassium bromide to its constituent elements potassium and bromide as follows
KBr ------- K + 1/2 Br2
As the heat is absorbed in this reaction therefore, heat is positive.
Thus, we concluded that the balanced thermochemical equation is
KBr ------- K + 1/2 Br2
learn more about thermochemical equation:
brainly.com/question/2733624
#SPJ4
Answer:
Solid metal
Explanation:
The reduced form of metal ions is the metal in elemental state (simple substance). So, if you have a solution with metal ions and they are reduced, you probably will see the deposition of the metal. For example: if you have a solution with sodium ions (Na⁺), and the ions are then reduced, you will see the aparition of a solid phase of metallic sodium (Na(s)), according to the following half-reaction:
Na⁺ + e- → Na(s)