Answer:
answer #1 used throughout the world to power devices, appliances and methods of transportation utilized in daily life. To make things operate, electrical energy must be emitted from energy sources such as power plants, to enable an object to consume the power it needs to function. ((if you want to cut it down short use the two first sentences))
answer #2 We get solar heat energy from the sun, and sunlight can also be used to produce electricity from solar
Explanation:
Answer:
Radioactive dating is a method of dating rocks and minerals using radioactive isotopes. This method is useful for igneous and metamorphic rocks, which cannot be dated by the stratigraphic correlation method used for sedimentary rocks. Over 300 naturally-occurring isotopes are known.
Answer : The correct option is, 
Explanation :
- Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. That means, the loss of electrons takes place.
Or we can say that, oxidation reaction occurs when a reactant losses electrons in the reaction.
- Reduction reaction : It is defined as the reaction in which a substance gains electrons. That means, the gain of electrons takes place.
Or we can say that, reduction reaction occurs when a reactant gains electrons in the reaction.
According to the electrochemical series,
most likely to be reduced because
Hence, the ion most likely to be reduced is
.
Answer:
a) 1,6%
b) 64,775 g/mol
c) 3,6×10⁻² M
d) 2,3×10⁻³ g/mL
Explanation:
a) The mass fractium of helium is obtained converting the moles of the four gases to grams with molar weight and then caculating of the total of grams how many are of helium, thus:
- Helium: 0,25 moles ×
= 1 g of Helium - Argon: 0,25 moles ×
= 10 g of Argon - Krypton: 0,25 moles ×
= 20,95 g of krypton - Xenon: 0,25 moles ×
= 32,825 g of Xenon
Total grams: 1g+10g+20,85g+30,825g= 62,675 g
Mass fraction of helium:
× 100 = <em>1,6%</em>
<em />
<em>The mass fraction of Helium is 1,6%</em>
<em />
<em>b)</em><em> </em>Because the mole fraction of all gases is the same the average molecular weight of the mixture is:
= 64,775 g/mol
c) The molar concentration is possible to know ussing ideal gas law, thus:
= M
Where:
P is pressure: 150 kPa
R is gas constant: 8,3145
T is temperature: 500 K
And M is molar concentration. Replacing:
M = 3,6×10⁻² M
d) The mass density is possible to know converting the moles of molarity to grams with average molecular weight and liters to mililiters, thus:
3,6×10⁻²
×
×
=
2,3×10⁻³ g/mL
I hope it helps!