A rainbow. Dispersion is the splitting of radiation into it's different wavelengths.
To solve the problem, we can use Charle's law, which states that for an ideal gas at constant pressure the ratio between absolute temperature T and volume V remains constant:

For a gas transformation, this law can be rewritten as

(1)
where 1 and 2 label the initial and final conditions of the gas.
Before applying the law, we must convert the temperatures in Kelvin:


The initial volume of the gas is

, so if we re-arrange (1) we find the new volume of the gas:
Answer:
the magnitude of the force that one particle exerts on the other is 79.08 N
Explanation:
given information:
q₁ = 3.77 μC = -3.77 x 10⁻⁶ C
q₂ = 4.39 μC = 4.39 x 10⁻⁶ C
r = 4.34 cm = 4.34 x 10⁻² m
What is the magnitude of the force that one particle exerts on the other?
lFl = kq₁q₂/r²
= (9 x 10⁹) (3.77 x 10⁻⁶) (4.39 x 10⁻⁶)/(4.34 x 10⁻²)²
= 79.08 N
Answer:
Force is equal to the change in momentum per change in time.
Explanation:
That situation is described by Newton's Second Law of Motion. According to NASA, this law states, "Force is equal to the change in momentum per change in time. For a constant mass, force equals mass times acceleration." This is written in mathematical form as Force = mass.
Answer:
Therefore,
The frequency heard by the engineer on train 1

Explanation:
Given:
Two trains on separate tracks move toward each other
For Train 1 Velocity of the observer,

For Train 2 Velocity of the Source,

Frequency of Source,

To Find:
Frequency of Observer,
(frequency heard by the engineer on train 1)
Solution:
Here we can use the Doppler effect equation to calculate both the velocity of the source
and observer
, the original frequency of the sound waves
and the observed frequency of the sound waves
,
The Equation is

Where,
v = velocity of sound in air = 343 m/s
Substituting the values we get

Therefore,
The frequency heard by the engineer on train 1
