Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
1,85 m / s²
Explanation:
De la pregunta anterior, se obtuvieron los siguientes datos:
Velocidad inicial (u) = 40 km / h
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
A continuación, convertiremos 40 km / ha m / s. Esto se puede obtener de la siguiente manera:
1 km / h = 0,2778 m / s
Por lo tanto,
40 km / h = 40 km / h × 0,2778 m / s / 1 km / h
40 km / h = 11,11 m / s
Por tanto, 40 km / h equivalen a 11,11 m / s.
Finalmente, determinaremos la aceleración del móvil durante el período en el que desaceleró. Esto se puede obtener de la siguiente manera:
Velocidad inicial (u) = 11,11 m / s
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
a = (v - u) / (t₂ - t₁)
a = (0 - 11,11) / (6 - 0)
a = - 11,11 / 6
a = –1,85 m / s²
Por tanto, la aceleración del móvil durante el período en el que se ralentizó es de –1,85 m / s²
B I think. Newtons first law talks about how if some thing is traveling at like 5 mph it’ll stay at 5 mph forever until the force is put on it.
Answer:
66.5N
Explanation:
F = kx
Where F = force
K = spring constant
x = compression
Given
K = 950N/m
x = 7.0cm
F = ?
First convert the compression to meters .
7.0cm = 7.0 x 0.01
= 0.07 meters
Therefore
F = 950 x 0.07
= 66.5N