Answer:
Explanation:
Givens
vi = 10 m/s
a = 1.5 m/s^2
d = 600 m
vf = ?
Formula
vf^2 = vi^2 + 2*a*d
Solution
vf^2 = 10^2 + 2*1.5 * 600
vf^2 = 100 + 1800
vf^2 = 1900
sqrt(vf^2) = sqrt(1900)
vf = 43.59 m/s
Answer:
new atmospheric pressure is 0.9838 ×
Pa
Explanation:
given data
height = 21.6 mm = 0.0216 m
Normal atmospheric pressure = 1.013 ✕ 10^5 Pa
density of mercury = 13.6 g/cm³
to find out
atmospheric pressure
solution
we find first height of mercury when normal pressure that is
pressure p = ρ×g×h
put here value
1.013 ×
= 13.6 × 10³ × 9.81 × h
h = 0.759 m
so change in height Δh = 0.759 - 0.0216
new height H = 0.7374 m
so new pressure = ρ×g×H
put here value
new pressure = 13.6 × 10³ × 9.81 × 0.7374
atmospheric pressure = 98380.9584
so new atmospheric pressure is 0.9838 ×
Pa
galactic disk
The galactic disk is a thinned, leveled out distribution of stars which includes the typical to the largest and brightest. The Sun is in the Milky Way and lies amongst the majority of the stars where it bulges.
Answer:
D is the answer I think (0 w 0 )
Explanation: