Integrating the velocity equation, we will see that the position equation is:

<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:

To get the position equation we just need to integrate the above equation:


Then:


Replacing that in our integral we get:


Where C is a constant of integration.
Now we remember that 
Then we have:

To find the value of C, we use the fact that f(0) = 0.

C = -1 / 3
Then the position function is:

Integrating the velocity equation, we will see that the position equation is:

To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
its the the first one u said
Answer: the particles are more orderly in region 1
Explanation: region 1 is when the substance is a solid and as it is heated the particles move further apart and have more kinetic energy.
The magnetic field at the center of the arc is 4 × 10^(-4) T.
To find the answer, we need to know about the magnetic field due to a circular arc.
<h3>What's the mathematical expression of magnetic field at the center of a circular arc?</h3>
- According to Biot savert's law, magnetic field at the center of a circular arc is
- B=(μ₀ I/4π)× (arc/radius²)
- As arc is given as angle × radius, so
B=( μ₀I/4π)×(angle/radius)
<h3>What will be the magnetic field at the center of a circular arc, if the arc has current 26.9 A, radius 0.6 cm and angle 0.9 radian?</h3>
B=(μ₀ I/4π)× (0.9/0.006)
= (10^(-7)× 26.9)× (0.9/0.006)
= 4 × 10^(-4) T
Thus, we can conclude that the magnitude of magnetic field at the center of the circular arc is 4 × 10^(-4) T.
Learn more about the magnetic field of a circular arc here:
brainly.com/question/15259752
#SPJ4
Answer:
<h2>1.17 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>1.17 m/s²</h3>
Hope this helps you